无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 676-682.DOI: 10.15541/jim20210426 CSTR: 32189.14.10.15541/jim20210426
收稿日期:
2021-07-07
修回日期:
2021-09-29
出版日期:
2022-06-20
网络出版日期:
2021-11-01
通讯作者:
李桂芳, 副教授. E-mail: gfli@mail.xidian.edu.cn作者简介:
关旭峰(1997-), 男, 硕士研究生. E-mail: 15735151209@163.com
基金资助:
GUAN Xufeng(), LI Guifang(
), WEI Yunge
Received:
2021-07-07
Revised:
2021-09-29
Published:
2022-06-20
Online:
2021-11-01
Contact:
LI Guifang, assiociate professor. E-mail: gfli@mail.xidian.edu.cnAbout author:
GUAN Xufeng (1997–), male, Master candidate. E-mail: 15735151209@163.com
Supported by:
摘要:
红色荧光粉对改善白光LED(w-LEDs)发光性能具有至关重要的作用。为制备与商用LED芯片相符的、高效和稳定性好的红色荧光粉, 本研究采用传统高温固相法合成了系列四方白钨矿结构的Na1-xMxCaEu(WO4)3 (M= Li, K)红色荧光粉, 并系统研究了Li+和K+的掺杂对NaCaEu(WO4)3荧光粉晶体结构、发光性能以及热猝灭特性的影响。Rietveld精修结果显示, 掺杂Li+和K+没有改变NaCaEu(WO4)3基质的四方白钨矿结构, 而是形成了固溶体, 并且导致晶格常数呈现规律性的变化。光致发光光谱表明, 在近紫外光395 nm激发下, 荧光粉呈现典型的红色发射, 其最强发射峰位于617 nm处, 对应于Eu3+离子的5D0→7F2跃迁, 这表明Eu3+处于非对称中心格位。更值得注意的是掺杂Li+和K+有效改善了NaCaEu(WO4)3荧光粉的发光强度, 当Li+和K+的掺杂浓度(物质的量分数)分别为100%和30%时, 荧光粉的发光强度和色纯度达到最佳。此外, 还对Na1-xMxCaEu(WO4)3 (M=Li, K)荧光粉的热猝灭特性机理进行了研究。结果显示, 掺杂Li+和K+荧光粉均表现出卓越的热猝灭特性, 其中当Li+掺杂浓度(物质的量)为100%时, LiCaEu(WO4)3荧光粉的热猝灭特性最佳。以上研究结果均表明Na1-xMxCaEu(WO4)3 (M= Li, K)红色荧光粉在大功率近紫外激发的白光发光二极管中具有潜在的应用价值。
中图分类号:
关旭峰, 李桂芳, 卫云鸽. Na1-xMxCaEu(WO4)3 (M=Li, K)红色荧光粉的微观结构与热猝灭特性研究[J]. 无机材料学报, 2022, 37(6): 676-682.
GUAN Xufeng, LI Guifang, WEI Yunge. Microstructure and Thermal Quenching Characteristics of Na1-xMxCaEu(WO4)3 (M=Li, K) Red Phosphor[J]. Journal of Inorganic Materials, 2022, 37(6): 676-682.
Materials | Crystal system | Space group | a=b/nm | c/nm | V/nm3 | α=β=γ | Rwp/% | R/%p | χ2 |
---|---|---|---|---|---|---|---|---|---|
LiCaEu(WO4)3 | Tetragonal | I41/a | 0.5230570(26) | 1.1319686(43) | 0.309694(8) | 90° | 8.61 | 7.66 | 2.438 |
NaCaEu(WO4)3 | Tetragonal | I41/a | 0.5255477(32) | 1.1393990(48) | 0.314702(5) | 90° | 7.68 | 5.95 | 1.468 |
KCaEu(WO4)3 | Tetragonal | I41/a | 0.5273337(35) | 1.1479226(52) | 0.319357(6) | 90° | 7.94 | 6.17 | 1.315 |
表1 LiCaEu(WO4)3、NaCaEu(WO4)3和KCaEu(WO4)3荧光粉的Rietveld精修结构参数
Table 1 Structure parameters of LiCaEu(WO4)3, NaCaEu(WO4)3 and KCaEu(WO4)3
Materials | Crystal system | Space group | a=b/nm | c/nm | V/nm3 | α=β=γ | Rwp/% | R/%p | χ2 |
---|---|---|---|---|---|---|---|---|---|
LiCaEu(WO4)3 | Tetragonal | I41/a | 0.5230570(26) | 1.1319686(43) | 0.309694(8) | 90° | 8.61 | 7.66 | 2.438 |
NaCaEu(WO4)3 | Tetragonal | I41/a | 0.5255477(32) | 1.1393990(48) | 0.314702(5) | 90° | 7.68 | 5.95 | 1.468 |
KCaEu(WO4)3 | Tetragonal | I41/a | 0.5273337(35) | 1.1479226(52) | 0.319357(6) | 90° | 7.94 | 6.17 | 1.315 |
图3 617 nm监测下LiCaEu(WO4)3、NaCaEu(WO4)3和KCaEu(WO4)3荧光粉的激发光谱图
Fig. 3 Excitation spectra of LiCaEu(WO4)3, NaCaEu(WO4)3 and KCaEu(WO4)3 phosphors monitored at 617 nm Colourful figures are available on website
图4 荧光粉的发射光谱和荧光粉发光强度对比图
Fig. 4 Emission spectra of phosphors and intensity contrast diagram of phosphors (a) Emission spectra of Na1-xLixCaEu(WO4)3; (b) Emission spectra of Na1-xKxCaEu(WO4)3; (c) Intensity contrast diagram of NaCaEu(WO4)3, Na0.7K0.3CaEu(WO4)3 and LiCaEu(WO4)3 phosphors Colorful figures are available on website
Material | CIE chromaticity coordinate | Color purity/% | |
---|---|---|---|
x | y | ||
NaCaEu(WO4)3 | 0.6580 | 0.341 | 96.07 |
Na0.7K0.3CaEu(WO4)3 | 0.661 | 0.338 | 96.83 |
LiCaEu(WO4)3 | 0.665 | 0.334 | 97.87 |
表2 NaCaEu(WO4)3、Na0.7K0.3CaEu(WO4)3和LiCaEu(WO4)3荧光粉色坐标和色纯度
Table 2 CIE chromaticity coordinates and color purities of NaCaEu(WO4)3, Na0.7K0.3CaEu(WO4)3 and LiCaEu(WO4)3 phosphors
Material | CIE chromaticity coordinate | Color purity/% | |
---|---|---|---|
x | y | ||
NaCaEu(WO4)3 | 0.6580 | 0.341 | 96.07 |
Na0.7K0.3CaEu(WO4)3 | 0.661 | 0.338 | 96.83 |
LiCaEu(WO4)3 | 0.665 | 0.334 | 97.87 |
图5 NaCaEu(WO4)3、Na0.7K0.3CaEu(WO4)3和LiCaEu(WO4)3 荧光粉的色坐标图
Fig. 5 CIE chromaticity diagram of NaCaEu(WO4)3, Na0.7K0.3CaEu(WO4)3 and LiCaEu(WO4)3 phosphors
图6 NaCaEu(WO4)3、Na0.7K0.3CaEu(WO4)3和LiCaEu(WO4)3荧光粉荧光寿命衰减曲线(λex=395 nm, λem=617 nm)
Fig. 6 Decay curves of NaCaEu(WO4)3, Na0.7K0.3CaEu(WO4)3 and LiCaEu(WO4)3 phosphors (λex=395 nm, λem=617 nm)
图7 不同温度下荧光粉的发射光谱图(λex=395 nm)(a~c)、ln(I0/IT-1)与1/(kT)的关系曲线(d)和热猝灭过程的能级位形坐标图(e)
Fig. 7 Emission spectra of phosphors at different temperatures (λex=395 nm) (a-c), plot of ln(I0/IT-1) versus 1/(kT) (d) and schematic illustration of a configuration coordinate diagram of the thermal quenching process (e) (a) NaCaEu(WO4)3; (b) Na0.7K0.3CaEu(WO4)3; (c) LiCaEu(WO4)3
[1] | LI S, GUO N, LIANG Q M, et al. Red phosphors doped by Eu used in white LED. Chinese Journal of Inorganic Chemistry, 2017, 33(4): 543-549. |
[2] |
ZHANG W N, TONG Y, HU F F, et al. A novel single-phase Na3.6Y1.8(PO4)3: Bi3+Eu3+ phosphor for tunable and white light emission. Ceramics International, 2020, 47(1): 284-291.
DOI URL |
[3] |
LOU S S, ZHANG P C, CHEN Y, et al. Synthesis and luminescence enhancement of CaY0.6(MoO4)1.9: Eu3+ red phosphors by Sm3+ co-doping. Ceramics International, 2020, 47(7): 10174-10184.
DOI URL |
[4] | LIU R, WANG G X. Luminescent properties of a red phosphor CePO4-6LaPO4@4SiO2:Eu3+. Chinese Journal of Inorganic Chemistry, 2019, 35(9): 1659-1664. |
[5] |
DU F P, NAKAI Y, TSUBOI T J, et al. Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R=Al, Lu). Journal of Materials Chemistry, 2011, 21(12): 4669.
DOI URL |
[6] |
ZHOU W W, SONG M J, ZHANG Y, et al. Color tunable luminescence and optical temperature sensing performance in a single-phased KBaGd(WO4)3:Dy3+Eu3+ phosphor. Optical Materials, 2020, 109: 110271.
DOI URL |
[7] |
ZHOU W W, SONG M J, ZHANG Y, et al. Multicolor tunable luminescence and energy transfer mechanism in a novel single-phase KBaGd(WO4)3:Tb3+Eu3+ phosphor for NUV WLEDs. Journal of Alloys and Compounds, 2019, 803: 1063-1047.
DOI URL |
[8] |
BIN J X, LIU H K, MEI L F, et al. Multi-color luminescence evolution and efficient energy transfer of scheelite-type LiCaGd(WO4)3:Ln3+ (Ln=EuDy, Tb) phosphors. Ceramics International, 2019, 45(2): 1837-1845.
DOI URL |
[9] |
RAJENDRAN M, VAIDYANATHAN S. New red emitting phosphors NaSrLa(MO4)3: Eu3+ [M=Mo and W] for white LEDs: synthesis, structural and optical study. Journal of Alloys and Compounds, 2019, 789: 919-931.
DOI URL |
[10] |
LI L, CHANG W X, CHEN W Y, et al. Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid sate lighting: synthesis, structure and photoluminescent properties. Ceramics International, 2017, 43(2): 2720-2729.
DOI URL |
[11] |
LI G F, WEI Y G, LI Z M, et al. Synthesis and photoluminescence of Eu3+ doped CaGd2(WO4)4 novel red phosphors for white LEDs applications. Optical Materials, 2017, 66: 253-260.
DOI URL |
[12] | WANG X H, LI G F, WEI Y G, et al. Morphology-controlled synthesis and luminescence properties of red-emitting NaCaGd(W04)3: Eu3+ Phosphors Chinese Journal of Inorganic Chemistry, 2020, 36(10): 87-96. |
[13] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., 1976, 32(5): 751-767.
DOI URL |
[14] |
SHRUTHI D L, JAGANNATHA REDDY A, ANIL KUMAR G N, et al. Judd Ofelt theoretical analysis, photoluminescence properties of Eu3+ activated LiGd(WO4)2 phosphors. Journal of Luminescence, 2020, 222: 117167.
DOI URL |
[15] | LI G F, YANG Q, WEI Y G. Synthesis and photoluminescence properties of double perovskite NaLaMgWO6:Eu3+ red phosphors. Journal of Inorganic Materials, 2017, 32(9): 42-48. |
[16] |
RAN W G, NOH H M, CHOI C B, et al. Eu3+ doped (Li, Na, K) LaMgWO6red emission phosphors: an example to rational design with theoretical and experimental investigation. Journal of Alloys and Compounds, 2019, 785: 651-659.
DOI URL |
[17] |
BAI, S J, LIU Y, TAN G Q, et al. Enhanced quantum efficiency and thermal stability in CaWO4:Eu3+ phosphor based on structural modification induced by co-doping Al3+. Journal of Luminescence, 2020, 225: 117351.
DOI URL |
[18] |
LI X, YANG C, LIU Q S, et al. Enhancement of luminescence properties of SrAl2Si2O8: Eu3+ red phosphor. Ceramics International, 2020, 46(11): 17376-17382.
DOI URL |
[19] | TANG Q F, YANG T, GUO B, et al. Synthesis and photoluminescence properties of a potential red-emitting phosphor Sr2-xNb2O7: xEu3+ for white LEDs. Optik, 2021, 235: 166650. |
[20] |
ZHANG L X, XIE Y, GENG X, et al. Double perovskite Ca2MgTeO6:Eu3+ red-emitting phosphors with high thermal stability for near UV/blue excited white LEDs. Journal of Luminescence, 2020, 225: 117365.
DOI URL |
[21] |
SHRUTHI D L, ANIL KUMAR G N, JAGANNATHA REDDY A. Solid solution of novel LixByGdEu(WO4)2 (B=Na, K) red phosphors: influence of Na/K substitution on microstructures, Judd-Ofelt and luminescence properties for WLED applications. Ceramics International, 2021, 47(11): 16342-16357.
DOI URL |
[22] |
YUAN G F, CUI R R, ZHANG J, et al. A novel composite perovskite Ba3ZnNb2O9: Eu3+ orange red-emitting phosphor: crystal structure, luminescence properties and high thermal stability. Optik, 2021, 232: 166513.
DOI URL |
[23] |
TONG Y, CHEN Y H, CHEN S Y Z, et al. Luminescent properties of Na2GdMg2(VO4)3: Eu3+ red phosphors for NUV excited pc-WLEDs. Ceramics International, 2021, 47(9): 12320-12326.
DOI URL |
[24] |
TRAN M T, NGUYEN TU, QUANG N V, et al. Excellent thermal stability and high quantum efficiency orange-red-emitting AlPO4: Eu3+ phosphors for WLED application. Journal of Alloys and Compounds, 2021, 853: 156941.
DOI URL |
[25] |
XIN S Y, WANG Y H, ZHU G, et al. Structure and temperature sensitive photoluminescence in a novel phosphate red phosphor RbZnPO4:Eu3+. Dalton Transactions, 2015, 44(36): 16099-16106.
DOI URL |
[26] |
DU J W, PAN X Y, LIU Z P, et al. Highly efficient Eu3+ -activated Ca2Gd8Si6O26 red-emitting phosphors: a bifunctional platform towards white light-emitting diode and ratiometric optical thermometer applications. Journal of Alloys and Compounds, 2021, 859: 157843.
DOI URL |
[27] |
WANG L, GUO W L, TIAN Y, et al. High luminescent brightness and thermal stability of red emitting Li3Ba2Y3(WO4)8: Eu3+ phosphor. Ceramics International, 2016, 42(12): 13648-13653.
DOI URL |
[1] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[2] | 李琪, 黄羿, 钱滨, 许贝贝, 陈莉英, 肖文戈, 邱建荣. 橙黄光玻璃陶瓷的光固化成型与无压烧结[J]. 无机材料学报, 2022, 37(3): 289-296. |
[3] | 王兆武, 姬海鹏, 王飞翔, 侯星慧, 易莎莎, 周颖, 陈德良. 调控Al2O3晶型控制MgAl2O4:Mn4+荧光粉中Mn价态研究[J]. 无机材料学报, 2021, 36(5): 513-520. |
[4] | 姬海鹏, 张宗涛, XU Jian, TANABE Setsuhisa, 陈德良, 解荣军. Mn4+激活氧氟化物红光荧光粉的研究进展[J]. 无机材料学报, 2020, 35(8): 847-856. |
[5] | 曹逊, 曹翠翠, 孙光耀, 金平实. 单基质白光LED荧光粉研究进展[J]. 无机材料学报, 2019, 34(11): 1145-1155. |
[6] | 郑遗凡, 张露露, 王锴, 潘再法. 混合尖晶石型Zn6Ga8TiO20:Cr3+荧光粉的合成、结构表征与发光性能[J]. 无机材料学报, 2018, 33(1): 9-13. |
[7] | 李桂芳, 杨 倩, 卫云鸽. 复合钙钛矿型NaLaMgWO6: Eu3+红色荧光材料的制备及发光性能研[J]. 无机材料学报, 2017, 32(9): 936-942. |
[8] | 张 瑞, 王伯阳, 王 海. 白光LED用Phosphor-in-Glass荧光材料的研究进展[J]. 无机材料学报, 2017, 32(4): 337-345. |
[9] | 陈海涛, 黄雪飞, 黄维刚. 氮掺杂对Ca2SiO4: Eu2+电子结构和吸收光谱的影响[J]. 无机材料学报, 2017, 32(4): 443-448. |
[10] | 张双双, 田文郁, 张建新, 宋开新, 秦会斌. Si3N4掺杂氮化对Sr3SiO5:Eu2+荧光粉发光性能的影响[J]. 无机材料学报, 2017, 32(3): 252-256. |
[11] | 韩 斌, 王义飞, 刘 茜, 黄 庆. 助溶剂对Ba3Si6O12N2:Eu2+氮氧化物荧光粉制备及光学性能的影响[J]. 无机材料学报, 2016, 31(6): 652-660. |
[12] | 王连军, 周蓓莹, 顾士甲, 江 莞. 硅基氧化物发光玻璃及其制备技术研究进展[J]. 无机材料学报, 2016, 31(10): 1013-1022. |
[13] | 韩 斌, 王义飞, 刘 茜, 黄 庆. 微波法合成Ba3Si6O12N2:Eu2+绿色氮氧化物 荧光粉及其光学性能研究[J]. 无机材料学报, 2015, 30(3): 330-336. |
[14] | 彭 霞, 李淑星, 刘学建, 黄政仁, 李会利. Sr2Si5N8:Eu2+荧光粉的制备及其发光性能研究[J]. 无机材料学报, 2014, 29(12): 1281-1286. |
[15] | 李梦娜, 雷 芳, 陈昊鸿, 施 鹰, 赵景泰. Li、Eu掺杂NaY(WO4)2荧光粉的合成与红色发光[J]. 无机材料学报, 2013, 28(12): 1281-1285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||