无机材料学报 ›› 2022, Vol. 37 ›› Issue (4): 445-451.DOI: 10.15541/jim20210270 CSTR: 32189.14.10.15541/jim20210270
所属专题: 【能源环境】金属有机框架材料(202309)
收稿日期:
2021-04-26
修回日期:
2021-06-29
出版日期:
2022-04-20
网络出版日期:
2021-07-12
通讯作者:
秦鹏, 副研究员. E-mail: qinpeng@mail.sic.ac.cn;作者简介:
张国庆(1992–), 男, 博士研究生. E-mail: zgq201209@foxmail.com
ZHANG Guoqing1,2(), QIN Peng1(), HUANG Fuqiang1,2,3()
Received:
2021-04-26
Revised:
2021-06-29
Published:
2022-04-20
Online:
2021-07-12
Contact:
QIN Peng, associate professor. E-mail: qinpeng@mail.sic.ac.cn;About author:
ZHANG Guoqing (1992–), male, PhD candidate. E-mail: zgq201209@foxmail.com
Supported by:
摘要:
发光材料在机密信息保护与防伪领域中发挥着重要作用。钙钛矿纳米晶作为一类高效低成本发光材料可通过两步法原位转换获得, 使其在信息加密、解密领域极具应用前景。本研究探索了“不可见”铅有机框架和发光MAPbBr3钙钛矿纳米晶间的可逆转换, 以及它们在荧光打印信息存储中的应用。通过铅离子与2-甲基咪唑配位构建新型金属有机框架, 实现铅离子限域分布, 在此基础上通过与甲胺溴原位反应生成钙钛矿纳米晶。利用金属有机框架在可见/紫外光下无光响应的特性, 通过墨水打印对信息进行加密存储。加密信息经甲胺溴喷雾处理, 引发原位反应生成钙钛矿纳米晶, 在紫外光下表现出强光致发光特性, 实现信息解密。利用甲胺溴和水作为解密和加密试剂可实现荧光的多次循环显示与消除。
中图分类号:
张国庆, 秦鹏, 黄富强. 空间限域铅离子与钙钛矿纳米晶间的可逆转换与信息存储应用[J]. 无机材料学报, 2022, 37(4): 445-451.
ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage[J]. Journal of Inorganic Materials, 2022, 37(4): 445-451.
Fig. 1 Schematic diagram of in-situ growth of MAPbBr3 NCs from Pb-ZIF framework and optical images of Pb-ZIF (left under ambient light), and MAPbBr3 NCs@Pb-ZIF (right under UV light)
Fig. 2 (a) TEM image and (b) SAED pattern of Pb-ZIF powders SEM images of (c, d) Pb-ZIF and (e) MAPbBr3 NCs@Pb-ZIF powders, and (f) Elemental mappings of MAPbBr3 NCs@Pb-ZIF powder
Fig. 3 XPS spectra of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF samples (a) Survey XPS spectra; (b) Pb4f XPS spectra (The offset of Pb 4f peaks marked by an arrow); (c) Br3d XPS spectra of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF samples; (d) Br3d XPS spectrum of MAPbBr3 NCs@Pb-ZIF sample after etching
Fig. 4 (a) Absorption and (b) steady-state PL spectra of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF samples; (c) PL decay kinetics of MAPbBr3 NCs@Pb-ZIF sample; (d) Schematic confidential information encryption and decryption process based on Pb-ZIF and MAPbBr3 NCs@Pb-ZIF; (e) Optical images of the printed Pb-ZIF and MAPbBr3 NCs@Pb-ZIF patterns under UV excitation
Fig. 5 SEM images of (a) pristine commercial paper, (b) commercial paper after printed with Pb-ZIF ink, (c) commercial paper with MAPbBr3 NCs@Pb-ZIF NCs, (d) representative information encryption and decryption procedure, and (e) PL intensity of the printed MAPbBr3 NCs@Pb-ZIF patterns in the five cycles of encryption and decryption measurement
Fig. S1 X-ray diffraction patterns of Pb-ZIF and MAPbBr3 NCs@Pb-ZIF powders The ideal diffraction peaks of MAPbBr3 were presented as red vertical line
Fig. S4 (a) UV-Vis absorption spectra of the printed Pb-ZIF and MAPbBr3 NCs@Pb-ZIF patterns, (b) steady-state PL spectra and (c) PL decay kinetics of the printed MAPbBr3 NCs@Pb-ZIF patterns
τ1/ns | f1 | τ2/ns | f2 | τavg/ns | |
---|---|---|---|---|---|
Powder | 4.0 | 82.7% | 16.3 | 17.3% | 6.1 |
Table S1 PL lifetime for MAPbBr3 NCs@Pb-ZIF powders
τ1/ns | f1 | τ2/ns | f2 | τavg/ns | |
---|---|---|---|---|---|
Powder | 4.0 | 82.7% | 16.3 | 17.3% | 6.1 |
[1] |
GAO Z, HAN Y, WANG F. Cooperative supramolecular polymers with anthracene-endoperoxide photo-switching for fluorescent anti- counterfeiting. Nature Communications, 2018, 9: 3977.
DOI URL |
[2] |
WU W, LIU H, YUAN J, et al. Nanoemulsion fluorescence inks for anti-counterfeiting encryption with dual-mode, full-color, long-term stability. Chemical Communications, 2021, 57(40): 4894-4897.
DOI URL |
[3] |
ZHANG Y, HUANG R, LI H, et al. Triple-mode emissions with invisible near-infrared after-glow from Cr3+-doped zinc aluminum germanium nanoparticles for advanced anti-counterfeiting applications. Small, 2020, 16(35):2003121.
DOI URL |
[4] |
DONG H, SUN L D, FENG W, et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano, 2017, 11(3): 3289-3297.
DOI URL |
[5] |
LU Y, ZHAO J, ZHANG R, et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photonics, 2014, 8(1): 32-36.
DOI URL |
[6] |
ZHOU L, FAN Y, WANG R, et al. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection. Angewandte Chemie International Edition, 2018, 57(39): 12824-12829.
DOI URL |
[7] |
YIN Z, LI H, XU W, et al. Local field modulation induced three- order upconversion enhancement: combining surface plasmon effect and photonic crystal effect. Advanced Materials, 2016, 28(13): 2518-2525.
DOI URL |
[8] |
ZHOU D, LIU D, XU W, et al. Synergistic upconversion enhancement induced by multiple physical effects and an angle-dependent anticounterfeit application. Chemistry of Materials, 2017, 29(16): 6799-6809.
DOI URL |
[9] |
REN W, LIN G, CLARKE C, et al. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Advanced Materials, 2020, 32(18):1901430.
DOI URL |
[10] |
BERA S, PRADHAN N. Perovskite nanocrystal heterostructures: synthesis, optical properties, and applications. ACS Energy Letters, 2020, 5(9): 2858-2872.
DOI URL |
[11] |
YU X, WU L, YANG D, et al. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting. Angewandte Chemie International Edition, 2020, 59(34): 14527-14532.
DOI URL |
[12] |
HUANG X, GUO Q, KANG S, et al. Three-dimensional laser- assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano, 2020, 14(3): 3150-3158.
DOI URL |
[13] |
HUANG X, GUO Q, YANG D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics, 2020, 14(2): 82-88.
DOI URL |
[14] |
ZHANG C, WANG B, LI W, et al. Conversion of invisible metal- organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 2017, 8: 1138.
DOI URL |
[15] |
SADEGHZADEH H, MORSALI A. Sonochemical synthesis and structural characterization of a nano-structure Pb (II) benzentricarboxylate coordination polymer: new precursor to pure phase nanoparticles of Pb (II) oxide. Journal of Coordination Chemistry, 2010, 63(4): 713-720.
DOI URL |
[16] |
SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High- quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 2015, 6: 7586.
DOI URL |
[17] |
SUN J Y, RABOUW F T, YANG X F, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X=Cl, Br, and I) zeolite- Y composite phosphors for potential backlight display application. Advanced Functional Materials, 2017, 27(45):1704371.
DOI URL |
[18] |
PU Y C, FAN H C, LIU T W, et al. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis. Journal of Materials Chemistry A, 2017, 5(48): 25438-25449.
DOI URL |
[19] |
JUNG D H, PARK J H, LEE H E, et al. Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy, 2019, 61: 236-244.
DOI URL |
[20] |
BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites. Advanced Energy Materials, 2020, 10(26):1903659.
DOI URL |
[21] |
LI B, LONG R, XIA Y, et al. All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor. Angewandte Chemie International Edition, 2018, 57(40): 13154-13158.
DOI URL |
[22] |
MALGRAS V, TOMINAKA S, RYAN J W, et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. Journal of the American Chemical Society, 2016, 138(42): 13874-13881.
DOI URL |
[23] |
YAN F, XING J, XING G, et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Letters, 2018, 18(5): 3157-3164.
DOI URL |
[24] |
ZHANG C, LI W, LI L. Metal halide perovskite nanocrystals in metal-organic framework host: not merely enhanced stability. Angewandte Chemie International Edition, 2021, 60(14): 7488-7501.
DOI URL |
[1] | 李乾利, 黎乃鑫, 李育成, 刘慎业, 程帅, 杨光, 任宽, 王峰, 赵景泰. 辐射光致发光材料及其应用研究进展[J]. 无机材料学报, 2023, 38(7): 731-749. |
[2] | 柳琪, 朱璨, 谢贵震, 王俊, 张东明, 邵刚勤. Ce掺杂SrMgF4超结构多晶体的吸收/光致发光光谱[J]. 无机材料学报, 2022, 37(8): 897-902. |
[3] | 关旭峰, 李桂芳, 卫云鸽. Na1-xMxCaEu(WO4)3 (M=Li, K)红色荧光粉的微观结构与热猝灭特性研究[J]. 无机材料学报, 2022, 37(6): 676-682. |
[4] | 杜傲宸, 杜琪源, 刘欣, 杨益民, 夏晨阳, 邹军, 李江. 高光效、大功率LEDs/LDs用Ce:YAG透明陶瓷[J]. 无机材料学报, 2021, 36(8): 883-892. |
[5] | 杨丹丹, 李晓明, 孟翠芳, 陈佳欣, 曾海波. CsPbX3纳米晶稳定性的研究进展[J]. 无机材料学报, 2020, 35(10): 1088-1098. |
[6] | 李桂芳, 杨 倩, 卫云鸽. 复合钙钛矿型NaLaMgWO6: Eu3+红色荧光材料的制备及发光性能研[J]. 无机材料学报, 2017, 32(9): 936-942. |
[7] | 鄢波, 彭泽洋, 吕斌, 刘薇. 圆偏振光诱导CdTe量子点再生长及其对光致发光的影响[J]. 无机材料学报, 2017, 32(12): 1321-1326. |
[8] | 卓世异, 刘 熙, 高 攀, 严成锋, 施尔畏. N-B-Al共掺荧光4H-SiC施主受主对发光性能研究[J]. 无机材料学报, 2017, 32(1): 51-55. |
[9] | 杨修春. 离子交换和热处理对贵金属掺杂硅酸盐玻璃光致发光的影响[J]. 无机材料学报, 2016, 31(10): 1039-1045. |
[10] | 杨丰桕, 陆梦晨, 张 欣, 张 延, 王连军, 江 莞. 一种简单的水热法制备油溶性PbSe量子点[J]. 无机材料学报, 2015, 30(7): 774-778. |
[11] | 韩 斌, 王义飞, 刘 茜, 黄 庆. 微波法合成Ba3Si6O12N2:Eu2+绿色氮氧化物 荧光粉及其光学性能研究[J]. 无机材料学报, 2015, 30(3): 330-336. |
[12] | 郭 鹏, 彭林志, 张为海, 刘 雷, 熊 娟. Pr掺杂Mg2SnO4纳米颗粒的制备及其光致发光性能[J]. 无机材料学报, 2015, 30(11): 1172-1176. |
[13] | 陈小波, 杨 雯, 段良飞, 张力元, 杨培志. 周期性梯度富硅SiNx薄膜的微结构与发光特性[J]. 无机材料学报, 2014, 29(12): 1270-1274. |
[14] | 李艳辉, 彭 诚, 赵 威, 白明敏, 饶平根. 水热法制备介孔氧化铝的形貌演化研究[J]. 无机材料学报, 2014, 29(10): 1115-1120. |
[15] | 张志坤, 章俞之, 边继明, 孙景昌, 秦福文, 刘维峰, 骆英民. 石墨衬底上低维ZnO纳米材料的生长[J]. 无机材料学报, 2014, 29(1): 103-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||