无机材料学报 ›› 2022, Vol. 37 ›› Issue (8): 897-902.DOI: 10.15541/jim20210773 CSTR: 32189.14.10.15541/jim20210773
收稿日期:
2021-12-17
修回日期:
2022-04-07
出版日期:
2022-08-20
网络出版日期:
2022-04-07
通讯作者:
邵刚勤, 研究员. E-mail: gqshao@whut.edu.cn作者简介:
柳 琪(1993-), 男, 硕士. E-mail: liuqi19930126@163.com
LIU Qi(), ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin()
Received:
2021-12-17
Revised:
2022-04-07
Published:
2022-08-20
Online:
2022-04-07
Contact:
SHAO Gangqin, professor. E-mail: gqshao@whut.edu.cnAbout author:
LIU Qi (1993-), male, Master. E-mail: liuqi19930126@163.com
摘要:
稀土(RE)离子掺杂的钙钛矿型氟化物是可调谐光学材料的候选材料。本工作通过沉淀法合成了SrMgF4: xCe (x = 0, 0.007, 0.013和0.035)粉末。X射线衍射(XRD)分析表明所获得的荧光粉具有单斜超结构, 价态分析证实存在Ce3+/Ce4+混合价, 在紫外光区通过不同波长的激发光观察到两个荧光带B和C。当Ce3+多面体的对称性从高对称变为低对称时, 源于单斜超结构的晶体场导致能级发生强烈的改变。
中图分类号:
柳琪, 朱璨, 谢贵震, 王俊, 张东明, 邵刚勤. Ce掺杂SrMgF4超结构多晶体的吸收/光致发光光谱[J]. 无机材料学报, 2022, 37(8): 897-902.
LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure[J]. Journal of Inorganic Materials, 2022, 37(8): 897-902.
[1] |
OGORODNIKOV I N, PUSTOVAROV V A, ISAENKO L I, et al. Radiation-stimulated processes in SrMgF4 single crystals irradiated with fast electrons. Optical Materials, 2021, 118: 111234.
DOI URL |
[2] |
SINGH V S, BELSARE P D, MOHARIL S V. Wet chemical synthesis and study of luminescence in some Eu2+ activated AEMgF4 hosts. Physics of the Solid State, 2021, 62(12): 2318-2324.
DOI URL |
[3] | SOFRONOVA A Y, PUSTOVAROV V A, OGORODNIKOV I N. Radiation-induced defects in SrMgF4 single crystals irradiated by fast electrons. AIP Conference Proceedings, 2019, 2174: 020172. |
[4] |
GARCIA-CASTRO A C, IBARRA-HERNANDEZ W, BOUSQUET E, et al. Direct magnetization-polarization coupling in BaCuF4. Physical Review Letters, 2018, 121(11): 117601.
DOI URL |
[5] |
ATUCHIN V V, GOLOSHUMOVA A A, ISAENKO L I, et al. Crystal growth and electronic structure of low-temperature phase SrMgF4. Journal of Solid State Chemistry, 2016, 236: 89-93.
DOI URL |
[6] |
SCOTT J F. Searching for new ferroelectrics and multiferroics: a user’s point of view. npj Computational Materials, 2015, 1: 15006.
DOI URL |
[7] |
KUBEL F, HAGEMANN H, BILL H. Synthesis, crystal structures and spectroscopic investigations on samarium-doped mixed Ba1-δSrδMgF4 crystals. Materials Research Bulletin, 1997, 32(3): 263-269.
DOI URL |
[8] |
QUI B, BANKS E. The binary system SrF2-MgF2: phase diagram and study of growth of SrMgF4. Materials Research Bulletin, 1982, 17(9): 1185-1189.
DOI URL |
[9] |
BANKS E, NAKAJIMA S, SHONE M. New complex fluorides EuMgF4, SmMgF4, SrMgF4, and their solid solutions: photoluminescence and energy transfer. Journal of the Electrochemical Society, 1980, 127(10): 2234-2239.
DOI URL |
[10] |
EIBSCHÜTZ M, GUGGENHEIM H J. Antiferromagnetic-piezoelectric crystals: BaMF4(M = Mn, Fe, Co and Ni). Solid State Communications, 1968, 6(10): 737-739.
DOI URL |
[11] | ISHIZAWA N, SUDA K, ETSCHMANN B E, et al. Monoclinic superstructure of SrMgF4 with perovskite-type slabs. Acta Crystallographica Section C, 2001, 57(7): 784-786. |
[12] | ABRAHAMS S C. Structurally ferroelectric SrMgF4. Acta Crystallographica Section B, 2002, 58(1): 34-37. |
[13] |
MEL’NIKOVA S V, ISAENKO L I, GOLOSHUMOVA A A, et al. Investigation of the ferroelastic phase transition in the SrMgF4 pyroelectric crystal. Physics of the Solid State, 2014, 56(4): 757-760.
DOI URL |
[14] |
YELISSEYEV A P, JIANG X X, ISAENKO L I, et al. Structures and optical properties of two phases of SrMgF4. Physical Chemistry Chemical Physics, 2015, 17(1): 500-508.
DOI URL |
[15] |
YAMAGA M, KODAMA N. Vacuum ultraviolet spectroscopy of Ce3+-doped SrMgF4with superlattice structure. Journal of Physics- Condensed Matter, 2006, 18(26): 6033-6044.
DOI URL |
[16] |
HAGEMANN H, KUBEL F, BILL H, et al. 5D0→ 7F0 transitions of Sm2+ in SrMgF4: Sm2+ Journal of Alloys and Compounds, 2004, 374(1/2): 194-196.
DOI URL |
[17] |
CAO Z C, SHI C S, NI J Z. The valency and spectra of samarium ions in MF2-MgF2 (M=Ca, Sr, Ba). Journal of Luminescence, 1993, 55(5/6): 221-224.
DOI URL |
[18] |
TAMBOLI S, KADAM R M, DHOBLE S J. Photoluminescence and electron paramagnetic resonance properties of a potential phototherapic agent: MMgF4: Gd3+ (M = Ba, Sr) sub-microphosphors. Luminescence, 2016, 31(7): 1321-1328.
DOI URL |
[19] |
TIAN H Y, SHEN H Y, YANG Q H, et al. Synthesis, characterization and fluorescent properties of complex fluoride BaNiF4: Ce3+. Advanced Materials Research, 2012, 465: 56-60.
DOI URL |
[20] |
ZHU G X, XIE M B, YANG Q, et al. Hydrothermal synthesis and spectral properties of Ce3+ and Eu2+ ions doped KMgF3 phosphor. Optics and Laser Technology, 2016, 81: 162-167.
DOI URL |
[21] |
KORE B P, TAMBOLI S, DHOBLE N S, et al. Efficient resonance energy transfer study from Ce3+ to Tb3+ in BaMgF4. Materials Chemistry and Physics, 2017, 187: 233-244.
DOI URL |
[22] |
JANSSENS S, WILLIAMS G V M, CLARKE D. Synthesis and characterization of rare earth and transition metal doped BaMgF4 nanoparticles. Journal of Luminescence, 2013, 134: 277-283.
DOI URL |
[23] |
WATANABE S, ISHII T, FUJIMURA K, et al. First-principles relativistic calculation for 4f-5d transition energy of Ce3+ in various fluoride hosts. Journal of Solid State Chemistry, 2006, 179(8): 2438-2442.
DOI URL |
[24] |
YAMAGA M, HATTORI K, KODAMA N, et al. Superlattice structure of Ce3+-doped BaMgF4 fluoride crystals-X-ray diffraction, electron spin-resonance, and optical investigations. Journal of Physics-Condensed Matter, 2001, 13(48): 10811-10824.
DOI URL |
[25] |
KODAMA N, HOSHINO T, YAMAGA M, et al. Optical and structural studies on BaMgF4:Ce3+ crystals. Journal of Crystal Growth, 2001, 229(1): 492-496.
DOI URL |
[26] |
YAMAGA M, IMAI T, KODAMA N. Optical properties of two Ce3+-site centers in BaMgF4: Ce3+ crystals. Journal of Luminescence, 2000, 87-89: 992-994.
DOI URL |
[27] |
REY J M, BILL H, LOVY D, et al. Europium doped BaMgF4, an EPR and optical investigation. Journal of Alloys and Compounds, 1998, 268(1): 60-65.
DOI URL |
[28] | HAYASHI E, ITO K, YABASHI S, et al. Vacuum ultraviolet and ultraviolet spectroscopy of BaMgF4 co-doped with Ce3+ and Na+. Journal of Luminescence, 2006, 119: 69-74. |
[29] | HAYASHI E, ITO K, YABASHI S, et al. Ultraviolet irradiation effect of Ce3+-doped BaMgF4 crystals. Journal of Alloys and Compounds, 2006, 408: 883-885. |
[30] |
PUSTOVAROV V A, OGORODNIKOV I N, OMELKOV S I, et al. Electronic excitations and luminescence of SrMgF4 single crystals. Physics of the Solid State, 2014, 56(3): 456-467.
DOI URL |
[31] |
OGORODNIKOV I N, PUSTOVAROV V A, OMELKOV S I, et al. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals. Journal of Luminescence, 2014, 145: 872-879.
DOI URL |
[32] |
SCHOLZ G, BREITFELD S, KRAHL T, et al. Mechanochemical synthesis of MgF2-MF2 composite systems (M = Ca, Sr, Ba). Solid State Sciences, 2015, 50: 32-41.
DOI URL |
[33] | LIU Q. Photoluminescence properties of rare-earth Ce-doped SrMgF4 powder prepared through a wet-chemical route. Wuhan: Master Thesis of Wuhan University of Technology, 2019. |
[34] | ZHANG D M, LIU Q, SHAO G Q, et al. The Ce-doped SrMgF4 fluorescent materials and their preparation method thereof. Chinese Invention Patent, Appl. No.201910294625.6, 2019-4-12. |
[35] |
VEITSCH C, KUBEL F, HAGEMANN H. Photoluminescence of nanocrystalline SrMgF4 prepared by a solution chemical route. Materials Research Bulletin, 2008, 43(1): 168-175.
DOI URL |
[36] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976, A32: 751-767. |
[37] |
LIU Z P, XU Y, LI Z H, et al. Sulfur-resistant methanation over MoO3/CeO2-ZrO2 catalyst: influence of Ce-addition methods. Journal of Energy Chemistry, 2019, 28: 31-38.
DOI URL |
[38] | JEONG D W, NA H S, SHIM J O, et al. A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts. Catalysis Science & Technology, 2015, 5(7): 3706-3713. |
[39] |
SHAN W P, LIU F D, HE H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2012, 115-116: 100-106.
DOI URL |
[40] | LOEF E V D, DORENBOS P, EIJK C W E, et al. Scintillation properties of LaBr3: Ce3+ crystals: fast, efficient and high-energy- resolution scintillators. IEEE Transactions on Nuclear Science, 2002, 486(1): 254-258. |
[41] |
BLASSE G, BRIL A. Investigation of some Ce3+-activated phosphors. Journal of Chemical Physics, 1967, 47(47): 5139-5145.
DOI URL |
[42] |
DORENBOS P, PIERRON L, DINCA L, et al. 4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4. Journal of Physics Condensed Matter, 2003, 15(3): 511-520.
DOI URL |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[4] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[5] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[6] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
[7] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[8] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[9] | 代晓栋, 张露伟, 钱奕成, 任智鑫, 曹焕奇, 印寿根. 锡铅混合钙钛矿太阳能电池垂直组分梯度的溶剂工程调控[J]. 无机材料学报, 2023, 38(9): 1089-1096. |
[10] | 董思吟, 帖舒婕, 袁瑞涵, 郑霄家. 低维卤化物钙钛矿直接型X射线探测器研究进展[J]. 无机材料学报, 2023, 38(9): 1017-1030. |
[11] | 王润, 相恒阳, 曾海波. 钙钛矿多色级联发光二极管中多中心载流子均衡分布调控研究[J]. 无机材料学报, 2023, 38(9): 1062-1068. |
[12] | 王马超, 唐扬敏, 邓明雪, 周真真, 刘小峰, 王家成, 刘茜. 共沉淀法制备Cs2Ag0.1Na0.9BiCl6:Tm3+双钙钛矿及其近红外发光性能[J]. 无机材料学报, 2023, 38(9): 1083-1088. |
[13] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[14] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[15] | 蔡凯, 靳志文. 基于二维钙钛矿(PEA)2PbI4的光电探测器[J]. 无机材料学报, 2023, 38(9): 1069-1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||