[1] |
Liu M, Jiang L. Switchable adhesion on liquid/solid interfaces. Adv. Funct. Mater., 2010, 20(21): 3753-3764.
|
[2] |
崔晓松,姚 希,刘海华,等. 超疏水表面微纳结构设计与制备及润湿行为调控(I). 中国材料进展,2009, 28(12): 41-52.
|
[3] |
Guo Z, Liu W, Su B L. Superhydrophobic surfaces: from natural to biomimetic to functional. J. Colloid. Interface. Sci., 2011, 353(2): 335-355.
|
[4] |
DI Zhi-Yong, HE Jian-Ping, ZHOU Jian-Hua, et al. Fabrication and anticorrosion property of superhydrophobic surfaces with hierarchical structure through an organic-inorganic self-assemble process. Journal of Inorganic Materials, 2010, 25(7): 765-769.
|
[5] |
Xue C H, Jia S T, Zhang J, et al. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci. Technol. Adv. Mater. , 2010, 11(3): 033002-1-15.
|
[6] |
Qu M, Zhang B, Song S, et al. Fabrication of superhydrophobic surfaces on engineering materials by a solution-immersion process. Adv. Funct. Mater., 2007, 17(4): 593-596.
|
[7] |
刘 通, 刘 涛, 陈守钢, 等(LIU Tong, et al). 超疏水表面改善铝基材料的抗海水腐蚀性能. 无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24(11): 1859-1863.
|
[8] |
Luo Z Z, Zhang Z Z, Hu L T. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Adv. Mater., 2008, 20(5): 970-974.
|
[9] |
Larmour I A, Bell S E J, Saunders G C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew. Chem. Int. Ed., 2007, 46(10): 1710-1712.
|
[10] |
Liu H, Szunerits S, Xu W, et al. Preparation of superhydrophobic coatings on zinc as effective corrosion barriers. Appl. Mater. Interfaces, 2009, 1(6): 1150-1153.
|
[11] |
Wan Y, Wang Z, Xu, Z, et al. Fabrication and wear protection performance of superhydrophobic surface on zinc. Appl. Surf. Sci., 2011, 257(17): 7486-7489.
|
[12] |
Feng L, Zhang H, Mao P, et al. Superhydrophobic alumina surface based on stearic acid modification. Appl. Surf. Sci, 2011, 257(9): 3959-3963.
|
[13] |
Hong Y C, Cho S C, Shin D H, et al. A facile method for the fabrication of super-hydrophobic surfaces and their resulting wettability. Scripta Mater., 2008, 59(7): 776-779.
|
[14] |
Wang S, Feng L, Jiang L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv. Mater., 2006, 18(6): 767-770.
|
[15] |
Wang Q, Zhang B, Qua M, et al. Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid. Appl. Surf. Sci., 2008, 254(7): 2009-2012.
|
[16] |
Dowson D. History of Tribology. London: Professional Engineering Publishing, 1998.
|
[17] |
Lundgren S M, Ruths M, Danerlöv K, et al. Effects of unsaturation on film structure and friction of fatty acids in a model base oil. J. Colloid Interface Sci., 2008, 326(2): 530-536.
|
[18] |
Sahoo R R, Biswas S K. Frictional response of fatty acids on steel. J. Colloid Interface Sci., 2009, 333(2): 707-718.
|
[19] |
Zhang Z, Yu H, Shao X, et al. Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal. Chem. Eur. J., 2005, 11(10): 3149-3154.
|
[20] |
Hou X, Zhou F, Yu B, et al. Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification. Mate. Sci. Eng. A, 2007, 452-453: 732-736.
|
[21] |
Laibinis P E, Hickman J J, Wrighton M S, et al. Orthogonal systems for self-assembled monolayers: alkanethiols on gold and slkane carboxylic acids on alumina. Science, 1989, 245(4920): 845-847.
|
[22] |
Cassie A B D, Baxter S. Wettability of porous surfaces. Trans. Faraday. Soc., 1944, 40: 546-551.
|
[23] |
Raman A, Quinones R, Barriger L, et al. Understanding organic film behavior on alloy and metal oxides. Langmuir, 2010, 26(3): 1747-1754.
|
[24] |
Raman A, Gawalt E S. Self-assembled monolayers of alkanoic acids on the native oxide surface of SS316L by solution deposition. Langmuir, 2007, 23(5): 2284-2288.
|
[25] |
Shustak G, Domb A J, Mandler D. Preparation and characterization of n-alkanoic acid self-assembled monolayers adsorbed on 316L stainless steel. Langmuir, 2004, 20(18): 7499-7506.
|
[26] |
Bowden F P,Tabor D. The Friction and Lubrication of Solids. London: Oxford University Press, 2001.
|
[27] |
Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids. Proc. R. Soc. London, Ser. A, 1971, 324(1558): 301-313.
|
[28] |
Beake B D, Leggett G I. Variation of frictional forces in air with the compositions of heterogeneous organic surfaces. Langmuir, 2000, 16(2): 735-739.
|
[29] |
Yoon E S, Singh R A, Oh H J, et al. The effect of contact area on nano/micro-scale friction. Wear, 2005, 259(12): 1424-1432.
|
[30] |
Singh R A, Yoon E S, Kim H J, et al. Enhanced tribological properties of lotus leaf-like surfaces fabricated by capillary force lithography. Surf. Eng., 2007, 23(3): 161-164.
|