无机材料学报 ›› 2023, Vol. 38 ›› Issue (2): 137-147.DOI: 10.15541/jim20220343 CSTR: 32189.14.10.15541/jim20220343
所属专题: 【信息功能】介电、铁电、压电材料(202409)
谢兵1(), 蔡金峡1, 王铜铜1, 刘智勇1, 姜胜林2, 张海波3
收稿日期:
2022-06-19
修回日期:
2022-09-21
出版日期:
2023-02-20
网络出版日期:
2022-10-28
作者简介:
谢兵(1983-), 男, 博士, 副教授. E-mail: xieb@nchu.edu.cn
基金资助:
XIE Bing1(), CAI Jinxia1, WANG Tongtong1, LIU Zhiyong1, JIANG Shenglin2, ZHANG Haibo3
Received:
2022-06-19
Revised:
2022-09-21
Published:
2023-02-20
Online:
2022-10-28
About author:
XIE Bing (1983-), male, PhD, associate professor. E-mail: xieb@nchu.edu.cn
Supported by:
摘要:
薄膜电容器是现代电力装置与电子设备的核心电子元件, 受限于薄膜介质材料的介电常数偏低, 当前薄膜电容器难以获得高储能密度(指有效储能密度, 即可释放电能密度), 从而导致薄膜电容器体积偏大, 应用成本过高。将具有高击穿场强的聚合物与高介电常数的纳米陶瓷颗粒复合, 制备聚合物/陶瓷复合电介质, 是实现薄膜电容器高储能密度的有效策略。对于单层结构的0-3型聚合物/陶瓷复合电介质, 其介电常数与击穿场强难以同时获得有效提升, 限制了储能密度的进一步提高。为了解决此矛盾, 研究者们叠加组合高介电常数的复合膜与高击穿场强的复合膜, 制备了2-2型多层复合电介质, 能够协同调控极化强度与击穿场强来获取高储能密度。研究表明, 调控多层复合电介质的介观结构与微观结构, 可以实现优化电场分布、协同调控介电常数与击穿场强等目标。本文综述了近年来包括陶瓷/聚合物和全有机聚合物在内的多层聚合物基复合电介质的研究进展,重点阐述了多层结构调控策略对储能性能的提升作用,总结了聚合物基多层复合电介质的储能性能增强机制, 并讨论了当前多层复合电介质面临的挑战和发展方向。
中图分类号:
谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147.
XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density[J]. Journal of Inorganic Materials, 2023, 38(2): 137-147.
图1 PVDF基复合材料及三明治结构BT/PVDF复合材料[28]
Fig. 1 PVDF-based composites and sandwich-structured BT/PVDF composites[28] (a) Electric field distribution simulation diagram; (b) Breakdown field strength; (c) COMSOL multi-physics field simulation; (d, e) Energy density
图2 BT@HPC/PVDF复合材料[27]
Fig. 2 BT@HPC/PVDF composite[27] (a, b1) Schematic diagram of preparation and space charge polarization distribution of BT@HPC/PVDF composites; (b2) Microcapacitor networks constructed by BT@HPC; (b3) Generated space charge region (SCR) surrounding BT@HPC in the PVDF matrix; (b4) Space charge regions in single-layer structural composites; (b5) Three-layer structural composites; (c) Weibull breakdown distribution; (d) Discharged energy density Colorful figures are available on website
图3 全有机PMMA/P(VDF-HFP)复合膜的制备示意图、SEM截面图以及放电能量密度和充放电效率[35]
Fig. 3 Schematic preparation of all-organic PMMA/P(VDF-HFP) films, cross-sectional SEM image, discharged energy density, and charge-discharge efficiency[35] (a) Schematic illustration of PMMA/P(VDF-HFP) films; (b) SEM cross-sectional image; (c) Discharged energy density; (d) Charge-discharge efficiency
图4 以PVDF/BNNS为外层, PVDF/BST为中间层的三层复合薄膜[26]
Fig. 4 Three-layer composite film with PVDF/BNNS as the outer layer and PVDF/BST as the middle layer[26] (a) Structure schematic; (b) Weibull plots for the trilayer-structured nanocomposites indicating the failure distribution; (c) The development of electrical trees in the trilayer-structured nanocomposites with different BST NW contents at 550 MV·m−1; (d) Weibull breakdown strength and maximum electrical displacement; (e) Discharged energy density
图5 非对称LTN结构多层复合材料的介电储能性能[45]
Fig. 5 Dielectric energy storage properties of multilayer composites with asymmetric LTN structure[45] (a) Dielectric energy storage properties of multilayer composites with asymmetric LTN structure; (b) Weibull breakdown distribution; (c) Derived breakdown strength; (d) Discharged energy density; (e) Charge-discharge efficiency (b, d, e) E/F in volume fraction
图6 梯度结构BaTiO3/PVDF纳米复合材料(GLN)[46]
Fig. 6 Gradient-structured BaTiO3/PVDF nanocomposites (GLN)[46] (a) Electric field distribution and growth of breakdown channels; (b) Average electric field in each layer of GLNs; (c) Electric field gap at different interfaces and average electric field in the GLN sample; (d, e) Discharged energy density and charge-discharge efficiency
图7 P(VDF-HFP)/BT纳米复合材料以及P(VDF-HFP)-P(VDF-HFP)/BT多层纳米复合材料[48]
Fig. 7 P(VDF-HFP)/BT nanocomposites and P(VDF-HFP)-P(VDF-HFP)/BT multilayer nanocomposites[48] (a) Schematic illustration of the preparation; (b) SEM image of P(VDF-HFP)-10% BTO; (c, d) Polarization interface ions and induced depolarization and phase field simulation of multilayer nanocomposites; (e) Breakdown strength of multilayer composites and control group; (f) Discharged energy density of different types of composites
[1] |
ZHANG X, LI B W, DONG L, et al. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Advanced Materials Interfaces, 2018, 5(11): 1800096.
DOI URL |
[2] |
TAN D Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Advanced Functional Materials, 2020, 30(18): 1808567.
DOI URL |
[3] | XIE B, WANG Q, ZHANG Q, et al. High energy storage performance of PMMA nanocomposites utilizing hierarchically structured nanowires based on interface engineering. ACS Applied Materials & Interfaces, 2021, 13(23): 27382. |
[4] | HUANG X, SUN B, ZHU Y, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science, 2019, 100: 187. |
[5] | YANG M Z, JIANG J Y, SHEN Y. Progress in the research of high energy density dielectric energy storage materials. Journal of Silicates, 2021, 49(7): 1249. |
[6] |
HAN Z, WANG Q. Recent progress on dielectric polymers and composites for capacitive energy storage. iEnergy, 2022, 1(1): 50.
DOI URL |
[7] | HU H, ZHANG F, LUO S, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy, 2020, 74: 104844. |
[8] |
GUO M, JIANG J, SHEN Z, et al. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Materials Today, 2019, 29: 49.
DOI URL |
[9] |
XIE B, ZHANG H, ZHANG Q, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. Journal of Materials Chemistry A, 2017, 5(13): 6070.
DOI URL |
[10] |
ZHAO C, HUANG Y, WU J. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat, 2020, 2(6): 1163.
DOI URL |
[11] |
LI L, XIE B, LIU Z, et al. Improved energy storage performance of Ba0.4Sr0.6TiO3 by doping high polarization BiFeO3. Ceramics International, 2021, 47(10): 14647.
DOI URL |
[12] | DAI Z, XIE J, LIU W, et al. Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Applied Materials & Interfaces, 2020, 12(27): 30289. |
[13] |
YANG H, YAN F, LIN Y, et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. Journal of the European Ceramic Society, 2018, 38(4): 1367.
DOI URL |
[14] |
ZHANG Q, TONG H, CHEN J, et al. High recoverable energy density over a wide temperature range in Sr modified (Pb,La)-(Zr,Sn,Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Applied Physics Letters, 2016, 109(26): 262901.
DOI URL |
[15] | ZHANG Q, BHARTI V, KAVARNOS G. Poly(vinylidene fluoride) (PVDF) and its copolymers. Encyclopedia of Smart Materials, 2002, 44: 234. |
[16] | WAN B Q, ZHENG M S, CHA J W. Advances in polyimide composite energy storage dielectric materials. Insulation Materials, 2021, 54(11): 23. |
[17] |
XIE B, ZHANG Q, ZHANG L, et al. Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure. Nano Energy, 2018, 54: 437.
DOI URL |
[18] | PING J B, FENF Q K, ZHENG M M, et al. Preparation and dielectric/energy storage properties of surface-modified polypropylene films. Insulation Materials, 2022, 55(5): 49. |
[19] |
THAKUR Y, ZHANG B, DONG R, et al. Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy, 2017, 32: 73.
DOI URL |
[20] |
ZHANG T, ZHAO X, ZHANG C, et al. Polymer nanocomposites with excellent energy storage performances by utilizing the dielectric properties of inorganic fillers. Chemical Engineering Journal, 2021, 408: 127314.
DOI URL |
[21] | WANG J, LIU S H, CHEN C Q, et al. Interfacial modification and energy storage properties of barium titanate-based/polyvinylidene fluoride composite dielectric materials. Journal of Physics, 2020, 69(21): 59. |
[22] |
LI Y, ZHOU Y, ZHU Y, et al. Polymer nanocomposites with high energy density and improved charge-discharge efficiency utilizing hierarchically-structured nanofillers. Journal of Materials Chemistry A, 2020, 8(14): 6576.
DOI URL |
[23] |
XIE B, WANG T, CAI J, et al. High energy density of ferroelectric polymer nanocomposites utilizing PZT@SiO2 nanocubes with morphotropic phase boundary. Chemical Engineering Journal, 2022, 434: 134659.
DOI URL |
[24] |
WANG P J, ZHOU D, GUO H H, et al. Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core-shell BaTiO3@MgO structures as the filler. Journal of Materials Chemistry A, 2020, 8(22): 11124.
DOI URL |
[25] |
PAN Z, YAO L, ZHAI J, et al. Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. Journal of Materials Chemistry A, 2016, 4(34): 13259.
DOI URL |
[26] |
LIU F, LI Q, CUI J, et al. High-energy-density dielectric polymer nanocomposites with trilayered architecture. Advanced Functional Materials, 2017, 27(20): 1606292.
DOI URL |
[27] |
LIANG X, YU X, LV L, et al. BaTiO3 internally decorated hollow porous carbon hybrids as fillers enhancing dielectric and energy storage performance of sandwich-structured polymer composite. Nano Energy, 2020, 68: 104351.
DOI URL |
[28] |
WANG Y, CUI J, YUAN Q, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Advanced Materials, 2015, 27(42): 6658.
DOI |
[29] |
JIANG J, SHEN Z, QIAN J, et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Materials, 2019, 18: 213.
DOI URL |
[30] | JI X M, SUN B Z, LI C, et al. Research progress on enhancing dielectric energy storage density of polymer matrix composites using multilayer thin film technology. Materials Guide, 2022, 36(9): 185. |
[31] |
WANG Y, CHEN J, LI Y, et al. Multilayered hierarchical polymer composites for high energy density capacitors. Journal of Materials Chemistry A, 2019, 7(7): 2965.
DOI URL |
[32] |
NIU Y, DONG J, HE Y, et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano Energy, 2022, 97: 107215.
DOI URL |
[33] |
FENG M, FENG Y, ZHANG T, et al. Recent advances in multilayer- structure dielectrics for energy storage application. Advanced Science, 2021, 8(23): 2102221.
DOI URL |
[34] |
SUN Q, WANG J, ZHANG L, et al. Achieving high energy density and discharge efficiency in multi-layered PVDF-PMMA nanocomposites composed of 0D BaTiO3 and 1D NaNbO3@SiO2. Journal of Materials Chemistry C, 2020, 8(21): 7211.
DOI URL |
[35] |
CHEN J, WANG Y, YUAN Q, et al. Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge- discharge efficiency. Nano Energy, 2018, 54: 288.
DOI URL |
[36] | ZHANG W, GUAN F, JIANG M, et al. Enhanced energy storage performance of all-organic sandwich structured dielectrics with FPE and P(VDF-HFP). Composites Part A: Applied Science and Manufacturing, 2022: 107018. |
[37] |
LUO B, WANG X, WANG H, et al. P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Composites Science and Technology, 2017, 151: 94.
DOI URL |
[38] |
WANG Y, WANG L, YUAN Q, et al. Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization. Nano Energy, 2018, 44: 364.
DOI URL |
[39] |
XIE B, ZHU Y, MARWAT M A, et al. Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. Journal of Materials Chemistry A, 2018, 6(41): 20356.
DOI URL |
[40] |
ZHU Y, ZHU Y, HUANG X, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Advanced Energy Materials, 2019, 9(36): 1901826.
DOI URL |
[41] | LI Q, ZHANG G, LIU F, et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science, 2015, 8(3): 922. |
[42] |
AI D, LI H, ZHOU Y, et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Advanced Energy Materials, 2020, 10(16): 1903881.
DOI URL |
[43] |
CHEN S, MENG G, KONG B, et al. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chemical Engineering Journal, 2020, 387: 123662.
DOI URL |
[44] |
MIAO W, CHEN H, PAN Z, et al. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage. Composites Science and Technology, 2021, 201: 108501.
DOI URL |
[45] |
SUN L, SHI Z, HE B, et al. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Advanced Functional Materials, 2021, 31(35): 2100280.
DOI URL |
[46] |
WANG Y, WANG L, YUAN Q, et al. Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect. Journal of Materials Chemistry A, 2017, 5(22): 10849.
DOI URL |
[47] |
WANG Y, LI Y, WANG L, et al. Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Materials, 2020, 24: 626.
DOI URL |
[48] |
JIANG J, SHEN Z, QIAN J, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy, 2019, 62: 220.
DOI URL |
[49] |
FENG M, CHI Q, FENG Y, et al. High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Composites Part B: Engineering, 2020, 198: 108206.
DOI URL |
[50] |
ZENG Y, SHEN Z H, SHEN Y, et al. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation. Applied Physics Letters, 2018, 112(10): 103902.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||