[1] Novoselov K, Geim A, Morozov S, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.
[2] Partoens B, Peeters F. From graphene to graphite: electronic structure around the K point. Phys. Rev. B, 2006, 74(7): 075404-1-11.
[3] Geim A, Novoselov K. The rise of graphene. Nat. Mater., 2007, 6(3): 183-191.
[4] Lee C, Wei X, Kysar J, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.
[5] Novoselov K, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379.
[6] Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nat. Nanotechnol., 2007, 2(10): 605-615.
[7] Zhang Y, Tan Y, Stormer H, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438(7065): 201-204.
[8] Schedin F, Novoselov K S, Morozov S V, et al. Detection of individual gas molecules by graphene sensors. Nat. Mater., 2007, 6(9): 652-655.
[9] Katsnelson M. Graphene: carbon in two dimensions. Mater. Today, 2007, 10(1/2): 20-27.
[10] Novoselov K, Geim A, Morozov S, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197-200.
[11] Semenoff G. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett., 1984, 53(26): 2449-2452.
[12] 杨全红, 吕伟, 杨永岗, 等. 自由态二维碳原子晶体-单层石墨烯. 新型炭材料, 2008, 23(2): 97-103.
[13] Ishigami M, Chen J, Cullen W, et al. Atomic structure of graphene on SiO2. Nano Lett., 2007, 7(6): 1643-1648.
[14] Chae H, Siberio-Pérez D, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427(6974): 523-527.
[15] Nomura K, MacDonald A. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett., 2006, 96(25): 256602-1-4.
[16] Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C, 2008, 112(22): 8192-8195.
[17] Balandin A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902-907.
[18] Yu S, Kang M, Chang H, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc., 2005, 127(50): 17604-17605.
[19] Cao L, Wang X, Meziani M, et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc., 2007, 129(37): 11318-11319.
[20] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229-1232.
[21] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877-880.
[22] Kosynkin D, Higginbotham A, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872-876.
[23] Subrahmanyam K, Panchakarla L, Govindaraj A, et al. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C, 2009, 113(11): 4257-4259.
[24] Choucair M, Thordarson P, Stride J. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol., 2008, 4(1): 30-33.
[25] 徐秀娟, 秦金贵, 李 振. 石墨烯研究进展. 化学进展, 2009, 21 (12): 79-87.
[26] 胡耀娟, 金 娟, 张 卉, 等(HU Yao-Juan, et al). 石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Acta Phys-Chim. Sin.,) 2010, 26 (8): 2073-2086.
[27] 黄桂荣, 陈 建. 石墨烯的合成与应用. 炭素技术, 2009, 28(1): 35-39.
[28] 李 旭, 赵卫峰, 陈国华. 石墨烯的制备与表征研究. 材料导报, 2008, 22(8): 48-52.
[29] 顾正彬, 季根华, 卢明辉. 二维碳材料—石墨烯研究进展. 南京工业大学学报: 自然科学版, 2010, 32(3): 105-110.
[30] 马圣乾, 裴立振, 康英杰. 石墨烯研究进展. 现代物理知识, 2009, 21(4): 44-47.
[31] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191-1196.
[32] Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 2004, 108(52): 19912-19916.
[33] VanMil B L, Myers-Ward R L, Tedesco J L, et al. Graphene formation on SiC substrates. Mater. Sci. Forum, 2009, 615-617: 211-214.
[34] Camara N, Huntzinger J, Rius G, et al. Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC. Phys. Rev. B, 2009, 80(12): 125410-1-8.
[35] Camara N, Rius G, Huntzinger J, et al. Selective epitaxial growth of graphene on SiC. Appl. Phys. Lett., 2008, 93(12): 123503-1-3.
[36] Virojanadara C, Syv jarvi M, Yakimova R, et al. Homogeneous large-area graphene layer growth on 6H-SiC (0001). Phys. Rev. B, 2008, 78(24): 245403-1-6.
[37] Unarunotai S, Murata Y, Chialvo C, et al. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl. Phys. Lett., 2009, 95(20): 202101-1-3.
[38] Tang Jun, Liu Zhong-Liang, Kang Chao-Yang, et al. Epitaxial growth of graphene on 6H-SiC (0001) by thermal annealing. Chin. Phys. Lett., 2009, 26(8): 088104.
[39] Moreau E, Godey S, Ferrer F, et al. Graphene growth by molecular beam epitaxy on the carbon-face of SiC. Appl. Phys. Lett., 2010, 97(24): 241907-1-3.
[40] Virojanadara C, Yakimova R, Osiecki J, et al. Substrate orientation: a way towards higher quality monolayer graphene growth on 6H-SiC (0001). Surf. Sci., 2009, 603(15): L87-L90.
[41] Hibino H, Mizuno S, Kageshima H, et al. Stacking domains of epitaxial few-layer graphene on SiC(0001). Phys. Rev. B, 2009, 80(8): 085406-1-6.
[42] Dimitrakopoulos C, Lin Y, Grill A, et al. Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. J. Vac. Sci. Technol., B, 2010, 28(5): 985-992.
[43] Prakash G, Capano M A, Bolen M, et al. AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H-SiC (000 (1) over-bar). Carbon, 2010, 48: 2383-2393.
[44] Jernigan G, VanMil B, Tedesco J, et al. Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. Nano Lett., 2009, 9(7): 2605-2609.
[45] Gaskill D, Jernigan G, Campbell P, et al. Epitaxial graphene growth on SiC wafers. ECS Trans., 2009, 19(5): 117-124.
[46] Suemitsu M, Miyamoto Y, Handa H, et al. Graphene formation on a 3C-SiC (111) thin film grown on Si (110) substrate. J. Surf. Sci. Nanotech., 2009, 7: 311-313.
[47] Ouerghi A, Belkhou R, Marangolo M, et al. Structural coherency of epitaxial graphene on 3C-SiC (111) epilayers on Si (111). Appl. Phys. Lett., 2010, 97(16): 161905-1-3.
[48] Tung V, Allen M, Yang Y, et al. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol., 2008, 4(1): 25-29.
[49] Sutter P, Flege J, Sutter E. Epitaxial graphene on ruthenium. Nat. Mater., 2008, 7(5): 406-411.
[50] Preobrajenski A, Ng M, Vinogradov A, et al. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B, 2008, 78(7): 073401-1-4.
[51] Pan Y, Zhang H, Shi D, et al. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater., 2009, 21(27): 2777-2780.
[52] Sutter P, Albrecht P, Sutter E. Graphene growth on epitaxial Ru thin films on sapphire. Appl. Phys. Lett., 2010, 97(21): 213101-1-3.
[53] Coraux J, Busse C, Michely T. Structural coherency of graphene on Ir (111). Nano Lett., 2008, 8(2): 565-570.
[54] Coraux J. Growth of graphene on Ir (111). New J. Phys., 2009, 11(2): 023006.
[55] Reina A, Jia X, Ho |