[1] Chin Yu-p, Ailen G, O’Loughlin E. Molecular weight, polydispersity and spectroscopic properities of aquatic humic substances. Environmental Science & Technology, 1994, 28(11): 1852-1858.[2] Thurman E M, Wershaw R L, Malcolm R L, et al. Molecular size of aquatic humic substances. Organic Geochemistry, 1982, 4(1): 27-35.[3] Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 2001, 123(9): 2058-2059.[4] Yang K, Wang X L, Zhu L Z, et al. Competitive sorption of pyrene, phenanthrene, and aphthalene on multiwalled carbon nanotubes. Environmental Science & Technology, 2006b, 40(18): 5804-5810.[5] Yan X M, Shi B Y, Lu J J, et al. Adsorption and desorption of atrazine on carbon nanotubes. Journal of Colloid and Interface Science, 2008, 321(1): 30-38.[6] Peng X J, Li Y H, Luan Z K, et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 2003, 376(1/2): 154-158.[7] Lu C, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbin nanotubes. Journal of Hazardous Materials, 2006, 138(2): 304-310.[8] W u F C, Tseng R L, Hu C C. Comparisons of pore p roperties and adsorp tion performance of KOH-activated and steam-activated carbons. Microporous and Mesoporous Materials, 2005, 80(1/2/3): 95-106.[9] Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451-465.[10] Ho Y S, M ckay G. Kinetic models for the sorption of dye from aqueous solutions by wood. Transactions of the Institution of Chemical Engineers, 1998, 76(2): 183-191.[11] Benny T H, Bandosz T J, Wong S S. Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single walled carbon nanotubes. J. Colloid Interface Sci., 2008, 317(2): 375-382. |