无机材料学报

• 研究论文 •    

BNNS/聚硼氮烷杂化先驱体转化BN纤维中的纳米片尺寸效应

张韵铂, 王兵, 李威, 宋曲之, 杜贻昂, 王应德   

  1. 国防科技大学 新型陶瓷纤维及其复合材料重点实验室,长沙 410073
  • 收稿日期:2025-06-30 修回日期:2025-09-10
  • 通讯作者: 王 兵, 副研究员. E-mail: bingwang@nudt.edu.cn
  • 作者简介:张韵铂(1999-), 女, 博士研究生. E-mail: yunbozhangzyb@163.com
  • 基金资助:
    国防科技大学 (23-ZZCX-JDZ-38); 湖南省自然科学基金 (2023JJ40673)

Size Effect of Nanosheet on BN Fibers Derived from BNNS/Polyborazine Hybrid Precursor

ZHANG Yunbo, WANG Bing, LI Wei, SONG Quzhi, DU Yiang, WANG Yingde   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
  • Received:2025-06-30 Revised:2025-09-10
  • Contact: WANG Bing, associate professor. E-mail: bingwang@nudt.edu.cn
  • About author:ZHANG Yunbo (1999-), female, PhD candidate. E-mail: yunbozhangzyb@163.com
  • Supported by:
    National University of Defense Technology (23-ZZCX-JDZ-38); Hunan Provincial Natural Science Foundation (2023JJ40673)

摘要: BN陶瓷纤维因其优异的耐高温、导热和透波性能,在高温透波及半导体领域具有广泛的应用前景。但目前制备得到的BN陶瓷纤维结晶度较低,无法充分展现h-BN晶体结构所具有的优异性能。本工作基于BN纳米片(BNNS)可作为异质成核剂能够加速基底材料结晶的机制,采用一步球磨法制备了三种横向尺寸(0.5, 2, 4 μm)的氨基功能化BNNS。再通过化学键合方式将氨基功能化的BNNS接枝至聚硼氮烷先驱体分子链中,制备了BNNS/聚硼氮烷杂化先驱体,最终转化为高结晶高强度BN陶瓷纤维。本工作详细探究了BNNS横向尺寸对先驱体分子结构、理化性能及纺丝性能的影响,探索了BNNS横向尺寸-BN陶瓷纤维微结构-BN陶瓷纤维力学性能三者间构效关系。结果表明,增大BNNS尺寸能够提高先驱体陶瓷产率(最高可达64.1%),但同时会破坏先驱体熔融纺丝稳定性。研究发现,改变BNNS尺寸能够有效调控最终陶瓷纤维晶体结构,改善纤维力学性能。BNNS尺寸与最终BN陶瓷纤维中结晶度、晶粒尺寸及其力学性能不呈线性关系。虽然BNNS存在造成的纤维表面凸起导致含2 μm BNNS的BN陶瓷纤维平均力学强度(0.90 GPa)略低,但其结晶度(94%) 、h-BN晶粒尺寸(12.5 nm),以及密度(2.0 g/cm3)均达到最高。0.5 μm BNNS接枝的BN陶瓷纤维因兼具较高的结晶度(90%)和光滑纤维表面,表现出最出色的力学强度(0.94 GPa)。本工作为后续精细化调控纤维微结构以及制备高性能BN陶瓷纤维提供重要参考价值。

关键词: BN陶瓷纤维, 晶体结构, 力学性能, BN纳米片, BNNS尺寸效应

Abstract: BN ceramic fibers exhibit significant potential for applications in the high-temperature wave-transparent and semiconductor fields, due to their excellent resistance to high-temperature and thermal conductivity, as well as outstanding wave-transparent performance. However, the low crystallinity observed in BN ceramic fibers inhibits the complete realization of their superior properties associated with the h-BN crystal structure. In this work, based on the mechanism that inorganic nanofillers could act as heterogeneous nucleating agents to accelerate matrix crystallization, three lateral sizes of amino-functionalized BNNS were prepared utilizing a one-step ball milling method. BNNSs were chemical bonded to the molecular chain of polyborazine to synthesis hybrid BNNS/polyborazine precursors, which were finally derived to high performance BN ceramic fibers with high crystallinity. This investigation thoroughly explored the scale effect of BNNS on the molecular structure of hybrid precursor, as well as their physicochemical properties and melt spinning performance. The relationship among the BNNS size, microstructure, and mechanical properties was elucidated. Increasing BNNSs size could enhance the ceramic yield of precursor (up to 64.1%), but destroy the viscosity-time stability. Moreover, it was demonstrated that changing the BNNS scales could evidently regulate the crystal structure of BN ceramic fibers. Relationship among BNNSs lateral sizes, crystal structure, and mechanical performance was determined to be non-linear. BN ceramic fibers containing 2 μm BNNS displayed the highest crystallinity (94%), grain size (12.5 nm) and density (2.0 g/cm3). However, surface defects associated with 2 μm BNNS resulted in a non-optimal average strength (0.90 GPa). BN ceramic fibers doped with 0.5 μm BNNS exhibited the best average strength (0.94 GPa), attributed to the favorable combination of high crystallinity and a smooth surface. This work could provide crucial references for the fine regulation of microstructure and the preparation of high-performance BN ceramic fibers.

Key words: BN ceramic fiber, crystal structure, mechanical properties, BNNS, BNNS size effect

中图分类号: