无机材料学报

• 研究论文 • 上一篇    下一篇

多晶TaSb2的热磁性能研究

李鹏1, 仇鹏飞2, 江彬彬1, 肖杰2, 史迅2   

  1. 1.电子科技大学(深圳)高等研究院,深圳 518110;
    2.中国科学院 上海硅酸盐研究所, 关键陶瓷材料全国重点实验室,上海 200050
  • 收稿日期:2025-06-23 修回日期:2025-08-11
  • 作者简介:李 鹏(1995–), 男, 博士. E-mail: pengli@whu.edu.cn
  • 基金资助:
    国家自然科学基金(52402229); 中国博士后科学基金 (2024M750346)

Thermomagnetic Performance of Polycrystalline TaSb2

LI Peng1, QIU Pengfei2, JIANG Binbin1, XIAO Jie2, SHI Xun2   

  1. 1. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China;
    2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2025-06-23 Revised:2025-08-11
  • About author:LI Peng (1995–), male, PhD. E-mail: pengli@whu.edu.cn
  • Supported by:
    National Natural Science Foundation of China (52402229); China Postdoctoral Science Foundation (2024M750346)

摘要: 基于埃廷豪森效应的热磁制冷是一种低温固态制冷技术,具有控温精确、体积小、无振动、无噪音等优点。近年来,拓扑半金属因兼具电子与空穴两种载流子及高迁移率,在低温下表现出优异的热磁性能,成为潜在候选材料。本研究采用固相反应与放电等离子烧结工艺制备了高致密度多晶TaSb2,并系统测试其低温热磁输运性质。结果表明,多晶TaSb2能斯特热电势在27 K附近达到最大值,且表现出与磁场的正相关关系。多晶TaSb2在9 T和26 K时能斯特功率因子达到315.1 μW·cm-1·K-2,在9 T和22 K时能斯特热电优值达7.1×10-4 K-1,均优于大部分已报道的多晶热磁材料。机理分析发现,强双极效应、高载流子迁移率及显著的声子曳引效应共同提升了其热电势,从而赋予材料优异的热磁性能。此外,磁场可显著抑制低温下的电子热导率,导致磁场下总热导率主要来自于晶格贡献。本研究为低温固态制冷提供了新的材料选择和设计思路,得到的材料晶格热导率较高,在一定程度上限制了材料性能,未来通过声子工程降低晶格热导率有望进一步优化性能。

关键词: 拓扑半金属, 多晶TaSb2, 热磁效应, 双极效应, 声子曳引

Abstract: Thermomagnetic refrigeration based on the Ettingshausen effect is a low-temperature solid-state cooling technology with advantages of precise temperature control, compact size, and noiseless operation. In recent years, topological semimetals, which possess both electrons and holes as charge carriers and exhibit high carrier mobility, have shown excellent thermomagnetic performance at low temperatures, making them promising candidates for cryogenic applications. In this study, highly dense polycrystalline TaSb2 was synthesized via solid-state reaction followed by spark plasma sintering, and its low-temperature thermomagnetic transport properties were systematically investigated. The results show that the Nernst thermopower peaks at around 27 K and increases with applied magnetic field. Under 9 T and 26 K, the Nernst power factor reaches 315.1 μW·cm-1·K-2, while under 9 T and 22 K, the Nernst figure-of-merit is 7.1×10-4 K-1, both outperforming most reported polycrystalline thermomagnetic materials. Mechanistic analysis indicates that the high performance originates from the combined effects of strong bipolar effect, high carrier mobility, and significant phonon-drag enhancement of thermopower. Moreover, magnetic fields markedly suppress the electronic contribution to thermal conductivity at low temperatures, making the total thermal conductivity predominantly determined by the lattice component. This work offers a new material option and design strategy for low-temperature solid-state cooling applications. The relatively high lattice thermal conductivity partially limits the thermomagnetic performance, further reduction via phonon engineering could lead to substantial improvements.

Key words: topological semimetal, polycrystalline TaSb2, thermomagnetic effect, bipolar effect, phonon drag

中图分类号: