• •
孙炼, 张磊磊, 薛泽旭, 吴坤, 陈晔, 李志远, 王鲁凯, 王尊刚
收稿日期:
2025-04-08
修回日期:
2025-05-05
通讯作者:
张磊磊, 助理研究员. E-mail: zhangleilei@sklnbcpc.cn; 王尊刚, 研究员. E-mail: zhigang7991@163.com
作者简介:
孙 炼(1993-), 男, 助理研究员. E-mail: sunlian12@alumni.nudt.edu.cn
基金资助:
SUN Lian, ZHANG Leilei, XUE Zexu, WU Kun, CHEN Ye, LI Zhiyuan, WANG Lukai, WANG Zungang
Received:
2025-04-08
Revised:
2025-05-05
Contact:
ZHANG Leilei, assistant professor. E-mail: zhangleilei@sklnbcpc.cn; WANG Zungang, professor. E-mail: zhigang7991@163.com
About author:
SUN Lian (1993–), male, assistant professor. E-mail: sunlian12@alumni.nudt.edu.cn
Supported by:
摘要: 闪烁体是辐射探测领域的关键材料,在高能物理、医疗诊断、天文学、放射性勘测及国土安全领域有重要应用,但迄今为止鲜有兼具高光产额与能量分辨率、优异环境稳定性与低成本的闪烁体材料,迫切需要发现一种综合性能优异、成本合适的闪烁体。零维(0D)金属卤化物具有高光产额、弱自吸收效应、强环境适应性、良好的辐照稳定性等优势,是下一代闪烁体的优选。本文概述了0D金属卤化物闪烁体及其在辐射探测领域的研究进展,从分子结构出发概述了0D金属卤化物的特点与闪烁发光原理,特别是其独特的自陷激子发光特性;系统总结了具有优异辐射探测性能的Pb基、Cu基、Mn基、Sn基等典型0D金属卤化物材料并对它们进行细致比较;以及该类材料在辐射成像、能谱探测、中子探测等领域的应用。最后,结合研究现状,展望了0D金属卤化物材料在辐射探测领域面临的挑战与机遇。未来,研究者们应致力解决大尺寸低缺陷高透明闪烁单晶生长、更深入的闪烁机理研究以及针对多种形态的闪烁体性能测量标准构建等关键问题。
中图分类号:
孙炼, 张磊磊, 薛泽旭, 吴坤, 陈晔, 李志远, 王鲁凯, 王尊刚. 面向辐射探测应用的零维金属卤化物闪烁体研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250148.
SUN Lian, ZHANG Leilei, XUE Zexu, WU Kun, CHEN Ye, LI Zhiyuan, WANG Lukai, WANG Zungang. Research Progress of Zero-dimensional Metal Halide Scintillators towards Radiation Detection Applications[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250148.
[1] ZHENG Z, WEI Q, TONG Y,et al. Effect of Zr4+ co-doping on neutron/gamma discrimination of Cs2LaLiBr6:Ce crystals. Journal of Inorganic Materials, 2024, 39(5): 539. [2] JANA A, CHO S, PATIL S A, et al. Perovskite: scintillators, direct detectors, and X-ray imagers.Materials Today, 2022, 55: 110. [3] NIKL M, YOSHIKAWA A.Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials, 2015, 3(4): 463. [4] SHEN Y Q, SHI Y, PAN Y B, et al. Fabrication and 2D-mapping of Pr: Lu3Al5O12 scintillator ceramics with high light yield and fast decay time.Journal of Inorganic Materials, 2014, 29(5): 534. [5] GLODO J, WANG Y, SHAWGO R,et al. New developments in scintillators for security applications. Physics Procedia, 2017, 90: 285. [6] DI FULVIO A, SHIN T H, HAMEL M C,et al. Digital pulse processing for NaI(Tl) detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 806: 69. [7] HAWRAMI R, ARIESANTI E, FARSONI A,et al. Growth and evaluation of improved CsI:Tl and NaI:Tl scintillators, Crystals, 2022, 12(11): 1517. [8] BIZARRI G, DORENBOS P.Charge carrier and exciton dynamics in LaBr3:Ce3+ scintillators: experiment and model.Physical Review B, 2007, 75(18): 184302. [9] MOSZYŃSKI M, NASSALSKI A, SYNTFELD-KAŻUCH A,et al. Temperature dependences of LaBr3(Ce), LaCl3, 2006, 568(2): 739. [10] GUO S, LIU K, LIN Z,et al. Temperature dependence of Ce luminescence characteristics in LaBr3: Ce crystal. Journal of Luminescence, 2025, 277: 120956. [11] ZHOU L, LIAO J F, KUANG D B.An overview for zero-dimensional broadband emissive metal-halide single crystals.Advanced Optical Materials, 2021, 9(17): 2100544. [12] WELLS H L. Über die cäsium- und kalium-bleihalogenide. Zeitschrift fur Anorganische Chemie, 1893, 3(1): 195. [13] PAUL D K, HOSSAIN A K M A. A comprehensive DFT + U investigation of electrical, optical, and structural properties of doped CsSnCl3 perovskite: unveiling optoelectronic potential.Computational Materials Science, 2024, 231: 112585. [14] CHEN B, GUO Y, WANG Y,et al. Multiexcitonic emission in zero-dimensional Cs2ZrCl6:Sb3+ perovskite crystals. Journal of the American Chemical Society, 2021, 143(42): 17599. [15] TSUJI M, SASASE M, IIMURA S,et al. Room-temperature solid-state synthesis of Cs3Cu2I5 thin films and formation mechanism for its unique local structure. Journal of the American Chemical Society, 2023, 145(21): 11650. [16] SUN C, DENG Z, LI Z,et al. Achieving near-unity photoluminescence quantum yields in organic-inorganic hybrid antimony (III) chlorides with the [SbCl5] geometry. Angewandte Chemie International Edition, 2023, 62(10): e202216720. [17] ZHANG B, PINCHETTI V, ZITO J, et al. Isolated [SbCl6]3- octahedra are the only active emitters in Rb7Sb3Cl16 Nanocrystals. ACS Energy Letters, 2021, 6(11): 3952. [18] ECKHARDT K, BON V, GETZSCHMANN J,et al. Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic-inorganic material as a potential absorber for photovoltaics. Chemical Communications, 2016, 52(14): 3058. [19] DING M, WU Q, SHEN Y,et al.(C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O: exploring birefringent crystals in hybrid halide systems. Inorganic Chemistry, 2024, 63(21): 9701. [20] LI M, XIA Z.Recent progress of zero-dimensional luminescent metal halides.Chemical Society Reviews, 2021, 50(4): 2626. [21] LIU J, LI M, HAN Q,et al. Theoretical investigation of the structural stability, electronic and optical properties of the double perovskite Cs2ZrX6(X=Cl, Br, I). Materials Science in Semiconductor Processing, 2024, 171: 107984. [22] HAN D, SHI H, MING W,et al. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, 2018, 6(24): 6398. [23] HOANG T B, MOSES A F, ZHOU H L,et al. Observation of free exciton photoluminescence emission from single wurtzite GaAs nanowires. Applied Physics Letters, 2009, 94(13): 133105. [24] ZHANG Y, TU D, WANG L,et al. Transition metal ion-doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design. Materials Chemistry Frontiers, 2024, 8(1): 192. [25] SMITH M D, KARUNADASA H I.White-light emission from layered halide perovskites.Accounts of Chemical Research, 2018, 51(3): 619. [26] LI S, LUO J, LIU J,et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. The Journal of Physical Chemistry Letters, 2019, 10(8): 1999. [27] MURRAY R B, MEYER A.Scintillation response of activated inorganic crystals to various charged particles.Physical Review, 1961, 122(3): 815. [28] BIZARRI G.Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties.Journal of Crystal Growth, 2010, 312(8): 1213. [29] YAO Q, LI J, LI X,et al. Achieving a record scintillation performance by micro-doping a heterovalent magnetic ion in Cs3Cu2I5 single-crystal. Advanced Materials, 2023, 35(44): 2304938. [30] TONGUC B T, ARSLAN H AL-BURIAHI M S. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules.Radiation Physics and Chemistry, 2018, 153: 86. [31] DORENBOS P, HAAS J, EIJK C.Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals.IEEE Transactions on Nuclear Science, 1995, 42(6): 2190. [32] MOSZYŃSKI M, SYNTFELD-KAŻUCH A, SWIDERSKI L,et al. Energy resolution of scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 805: 25. [33] LECOQ P, KORZNIK M.Scintillator Developments for High Energy Physics and Medical Imaging, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019), 1999, 1: 1-5. [34] RONDA C.Scintillators for medical imaging.Optical Materials: X, 2024, 22: 100293. [35] TANG Y, DENG M, LIU Q,et al. Reducing luminescence intensity and suppressing irradiation-induced darkening of Bi4Ge3O12 by Ce-doping for radiation detection. Advanced Optical Materials, 2024, 12(2): 2301332. [36] WANG J X, SHEKHAH O, BAKR O M,et al. Energy transfer-based X-ray imaging scintillators. Chem, 2025, 11(1): 102273. [37] YIN J, ZHANG Y, BRUNO A,et al. Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals. ACS Energy Letters, 2017, 2(12): 2805. [38] NIKL M, MIHOKOVA E, NITSCH K,et al. Photoluminescence of Cs4PbBr6 crystals and thin films. Chemical Physics Letters, 1999, 306(5): 280. [39] AKKERMAN Q A, PARK S, RADICCHI E,et al. Nearly monodisperse insulator Cs4PbX6(X=Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 Nanocrystals. Nano Letters, 2017, 17(3): 1924. [40] BAO Z, TSENG Y J, YOU W,et al. Efficient luminescence from CsPbBr3 nanoparticles embedded in Cs4PbBr6. The Journal of Physical Chemistry Letters, 2020, 11(18): 7637. [41] SAIDAMINOV M I, ALMUTLAQ J, SARMAH S, et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Letters, 2016, 1(4): 840. [42] ZHANG H, LIAO Q, WU Y,et al. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability. Physical Chemistry Chemical Physics, 2017, 19(43): 29092. [43] YIN J, YANG H, SONG K,et al. Point defects and green emission in zero-dimensional perovskites. The Journal of Physical Chemistry Letters, 2018, 9(18): 5490. [44] CAO F, YU D, MA W,et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano, 2020, 14(5): 5183. [45] CUI B B, HAN Y, HUANG B,et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement. Nature Communications, 2019, 10(1): 5190. [46] ZHOU C, LIN H, WORKU M,et al. Blue emitting single crystalline assembly of metal halide clusters. Journal of the American Chemical Society, 2018, 140(41): 13181. [47] PENG G, AN B, CHEN H,et al. Self-organizing pixelated Cs4PbBr6 scintillator plate for large-area, ultra-flexible, high spatial resolution and stable X-Ray imaging. Advanced Optical Materials, 2023, 11(1): 2201751. [48] XU Q, WANG J, SHAO W,et al. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale, 2020, 12(17): 9727. [49] WU X, ZHOU Q, WU H,et al. Cs4PbBr6-xClx single crystals with tunable emission for X-ray detection and imaging. The Journal of Physical Chemistry C, 2021, 125(48): 26619. [50] WU H, RAN P, YAO L, et al. Confinement of methylammonium lead bromide nanocrystals in metal-organic frameworks as a stable scintillator for high-performance X-ray imaging. Chemical Engineering Journal, 2024, 491: 152098. [51] SHI W, ZHANG X, MATRAS-POSTOLEK K,et al. Mn-derived Cs4PbX6 nanocrystals with stable and tunable wide luminescence for white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10(10): 3886. [52] QIU Y, MA Z, DAI G,et al. Doped 0D Cs4PbCl6 single crystals featuring full-visible-region colorful luminescence. Journal of Materials Chemistry C, 2022, 10(16): 6227. [53] LI Y, CHEN L, GAO R,et al. Nanosecond and highly sensitive scintillator based on all-inorganic perovskite single Crystals. ACS Applied Materials & Interfaces, 2022, 14(1): 1489. [54] HAN J, LI Y, SHEN P,et al. Pressure-induced free exciton emission in a quasi-zero-dimensional hybrid lead halide. Angewandte Chemie International Edition, 2024, 63(1): e202316348. [55] CHEN S, GAO J, CHANG J,et al. Family of highly luminescent pure ionic copper (I) bromide based hybrid materials. ACS Applied Materials & Interfaces, 2019, 11(19): 17513. [56] JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure.Advanced Materials, 2018, 30(43): 1804547. [57] YUAN D.Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: Intrinsic and Tl doped with high light yield.ACS Applied Materials & Interfaces, 2020, 12(34): 38333. [58] STAND L, RUTSTROM D, KOSCHAN M,et al. Crystal growth and scintillation properties of pure and Tl-doped Cs3Cu2I5. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 164963. [59] CHENG S, BEITLEROVA A, KUCERKOVA R,et al. Zero-dimensional Cs3Cu2I5 perovskite single crystal as sensitive X-ray and γ-ray scintillator. Physica Status Solidi (RRL) - Rapid Research Letters, 2020, 14(11): 2000374. [60] CHENG S, NIKL M, BEITLEROVA A,et al. Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Advanced Optical Materials, 2021, 9(13): 2100460. [61] WANG Q, ZHOU Q, NIKL M,et al. Highly resolved X-Ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator. Advanced Optical Materials, 2022, 10(11): 2200304. [62] HU Y, YAN X, ZHOU L,et al. Improved energy transfer in Mn-doped Cs3Cu2I5 microcrystals induced by localized lattice distortion. The Journal of Physical Chemistry Letters, 2022, 13(46): 10786. [63] HAPOSAN T, ARRAMEL A, MAULIDA P Y D,et al. All-inorganic copper-halide perovskites for large-Stokes shift and ten-nanosecond-emission scintillators. Journal of Materials Chemistry C, 2024, 12(7): 2398. [64] HUNYADI M, SAMU G F, CSIGE L,et al. Scintillator of polycrystalline perovskites for high-sensitivity detection of charged-particle radiations. Advanced Functional Materials, 2022, 32(48): 2206645. [65] YANG Q, WEI H, LI G,et al. Spectral adjustable Re-Cs3Cu2I5 nanocrystal-in-glass composite with long-term stability. Chemical Engineering Journal, 2024, 483: 149288. [66] LIAN L, ZHENG M, ZHANG W,et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Advanced Science, 2020, 7(11): 2000195. [67] ZHU W, LI R, LIU X,et al. Photophysical properties of copper halides with strongly confined excitons and their high-performance X-Ray imaging. Advanced Functional Materials, 2024, 34(26): 2316449. [68] LIN N, WANG X, ZHANG H Y,et al. Zero-dimensional copper(I) halide microcrystals as highly efficient scintillators for flexible X-ray imaging. ACS Applied Materials & Interfaces, 2024, 16(31): 41165. [69] YAO Q, LI J, LI X,et al. High-quality Cs3Cu2I5 single-crystal is a fast-decaying scintillator. Advanced Optical Materials, 2022, 10(23): 2201161. [70] LIAN L, WANG X, ZHANG P,et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. The Journal of Physical Chemistry Letters, 2021, 12(29): 6919. [71] XU T, LI Y, NIKL M,et al. Lead-free zero-dimensional organic-copper (I) halides as stable and sensitive X-ray scintillators. ACS Applied Materials & Interfaces, 2022, 14(12): 14157. [72] LIN N, WANG R C, ZHANG S Y,et al. 0D hybrid cuprous halide as an efficient light emitter and X-ray scintillator. Laser & Photonics Reviews, 2023, 17(12): 2300427. [73] SU B, JIN J, HAN K,et al. Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4. Advanced Functional Materials, 2023, 33(5): 2210735. [74] KOIDL P.Jahn-Teller effect in the 4T1(1) and 4T2(1) states of tetrahedrally coordinated Mn2+.Physica Status Solidi (b), 1976, 74(2): 477. [75] KRETOV M K, ISKANDAROVA I M, POTAPKIN B V,et al. Simulation of structured 4T1→6A1 emission bands of Mn2+ impurity in Zn2SiO4: A first-principle methodology. Journal of Luminescence, 2012, 132(8): 2143. [76] SU B, MOLOKEEV M, XIA Z.Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying.Journal of Materials Chemistry C, 2019, 7(36): 11220. [77] KONG Q, MENG X, JI S,et al. Highly reversible cesium manganese iodine for sensitive water detection and X-ray imaging. ACS Materials Letters, 2022, 4(9): 1734. [78] XU M, YANG X, YANG X, et al. Heating revival of Cs3MnBr5 for anti-counterfeiting and large-area flexible X-ray imaging. Optical Materials, 2024, 156: 115959. [79] ZHOU G, LIU Z, HUANG J,et al. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1-xMnxBr4 solid solutions. The Journal of Physical Chemistry Letters, 2020, 11(15): 5956. [80] XU L J, LIN X, HE Q,et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nature Communications, 2020, 11(1): 4329. [81] WU Y, ZHU Y, AHMED A A,et al. Excitation-dependent anti-thermal quenching in zero-dimensional manganese bromides for photoluminescence and X-ray scintillation. Angewandte Chemie, 2025, 137(5): 1 [82] LI B, XU Y, ZHANG X,et al. Zero-dimensional luminescent metal halide hybrids enabling bulk transparent medium as large-area X-ray scintillators. Advanced Optical Materials, 2022, 10(10): 2102793. [83] LU J, GAO J, WANG S, et al. Improving X-ray scintillating merits of zero-dimensional organic-manganese (II) halide hybrids via enhancing the ligand polarizability for high-resolution imaging. Nano Letters, 2023, 23(10): 4351. [84] LIU L, HU H, PAN W,et al. Robust organogel scintillator for self-healing and ultra-flexible X-ray imaging. Advanced Materials, 2024, 36(13): 2311206. [85] ANDREWS R H, CLARK S J, DONALDSON J D, et al. Solid-state properties of materials of the type Cs4MX6(where M = Sn or Pb and X = Cl or Br).Journal of the Chemical Society, Dalton Transactions, 1983, 4: 767. [86] BENIN B M, DIRIN D N, MORAD V,et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angewandte Chemie International Edition, 2018, 57(35): 11329. [87] WANG A, LI J, ZHANG Y, et al. Double-shell encapsulation of lead-free tin halide perovskite for self-powered smart windows. Small, 2024, 20(51): 2404149. [88] LIU Y, YANG B, YU Z,et al. Eu3+@Cs4SnBr6 NCs-doped silicate glass with efficient tunable white light emission via energy transfer and multi-emission photoluminescence properties. Materials Today Chemistry, 2024, 42: 102387. [89] HUANG Y, LU X, WU H,et al., Improving photoluminescence properties of lead-free Cs4SnBr6 zero-dimensional perovskite via Mn2+/Sb3+ co-doping. Journal of Luminescence, 2025, 277: 120930. [90] ZHOU C, LIN H, TIAN Y,et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9(3): 586. [91] ZHOU C, TIAN Y, YUAN Z, et al. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite.ACS Applied Materials & Interfaces, 2017, 9(51): 44579. [92] SONG G, LI M, YANG Y, et al. Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission. The Journal of Physical Chemistry Letters, 2020, 11(5): 1808. [93] ZHOU L, ZHOU S, LIU X,et al. Embedding Te4+ into Sn4+-based metal halide to passivate structure defects for high-performance light-emitting application. Inorganic Chemistry, 2024, 63(22): 10335. [94] LIU X, LI K, SHAO W,et al. Revealing the structure-luminescence relationship in robust Sn(IV)-based metal halides by Sb3+ doping. Inorganic Chemistry, 2024, 63(11): 5158. [95] WEI S, TIE S, SHEN K,et al. High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal. Advanced Optical Materials, 2021, 9(22): 2101351. [96] WANG J, LI Y, MA L,et al. Air-stabilized lead-free hexagonal Cs3Bi2I9 nanocrystals for ultrahigh-performance optical detection. Advanced Functional Materials, 2022, 32(30): 2203072. [97] ZHOU C, WORKU M, NEU J,et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chemistry of Materials, 2018, 30(7): 2374. [98] MCCALL K M, MORAD V, BENIN B M,et al., Efficient lone-pair-driven luminescence: structure-property relationships in emissive 5s2 metal halides. ACS Materials Letters, 2020, 2(9): 1218. [99] ZAFFALON M L, WU Y, COVA F,et al. Zero-dimensional Gua3SbCl6 crystals as intrinsically reabsorption-free scintillators for radiation detection. Advanced Functional Materials, 2023, 33(48): 2305564. [100] XIE J L, HUANG Z Q, WANG B,et al. New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability. Nanoscale, 2019, 11(14): 6719. [101] TANG Y, LIANG M, CHANG B,et al. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. Journal of Materials Chemistry C, 2019, 7(11): 3369. [102] LIU X, ZHANG W, XU R,et al. Bright tunable luminescence of Sb3+ doping in zero-dimensional lead-free halide Cs3ZnCl5 perovskite crystals. Dalton Transactions, 2022, 51(26): 10029. [103] MARAYATHUNGAL J H, DAS D K, BAKTHAVATSALAM R,et al. Mn2+-activated zero-dimensional metal (Cd, Zn) halide hybrids with near-unity PLQY and zero thermal quenching. The Journal of Physical Chemistry C, 2023, 127(18): 8618. [104] HOU C, LIU X, WANG Z,et al. Designing guanidine-based lead-free hybrid indium perovskites with highly efficient intrinsic broadband emissions. Journal of Materials Chemistry C, 2024, 12(20): 7426. [105] WU Y, HAN D, CHAKOUMAKOS B C,et al. Zero-dimensional Cs4EuX6(X = Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy. Journal of Materials Chemistry C, 2018, 6(25): 6647. [106] SAEKI K, FUJIMOTO Y, KOSHIMIZU M,et al. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6. Applied Physics Express, 2016, 9(4): 042602. [107] ZHANG F, ZHOU Y, CHEN Z,et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Advanced Materials, 2022, 34(43): 2204801. [108] SWIDERSKI L, BRYLEW K, JANIAK L,et al. Cs2ZrCl6 scintillation properties studied using γ-ray spectroscopy and Compton coincidence technique. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1057: 168735. [109] ZHU W, MA W, SU Y,et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Science & Applications, 2020, 9(1): 112. [110] YAO S Y, LI H, ZHOU M,et al. Visualization of X-rays with an ultralow detection limit via zero-dimensional perovskite scintillators. ACS Applied Materials & Interfaces, 2022, 14(51): 56957. [111] MORAD V, SHYNKARENKO Y, YAKUNIN S,et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: Highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. Journal of the American Chemical Society, 2019, 141(25): 9764. [112] HE Q, ZHOU C, XU L,et al. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Materials Letters, 2020, 2(6): 633. [113] ZHOU W, ZHU X, YU J,et al. High-quality Cs3Cu2I5@PMMA scintillator films assisted by multiprocessing for X-ray imaging. ACS Applied Materials & Interfaces, 2023, 15(32): 38741. [114] MA W, LIANG D, QIAN Q,et al. Near-unity quantum yield in zero-dimensional lead-free manganese-based halides for flexible X-ray imaging with high spatial resolution. eScience, 2023, 3(2): 100089. [115] DUAN R, CHEN Z, XIANG D,et al. Large-area flexible scintillator screen based on copper-based halides for sensitive and stable X-ray imaging. Journal of Luminescence, 2023, 253: 119482. [116] YANG B, YIN L, NIU G,et al. Lead-free halide Rb2CuBr3 as sensitive X-Ray scintillator. Advanced Materials, 2019, 31(44): 1904711. [117] HAN L, SUN B, GUO C,et al. Photophysics in zero-dimensional potassium-doped cesium copper chloride Cs3Cu2Cl5 nanosheets and its application for high-performance flexible X-ray detection. Advanced Optical Materials, 2022, 10(6): 2102453. [118] QIU F, PENG G, XU Y,et al. Sequential vacuum evaporated copper metal halides for scalable, flexible, and dynamic X-ray detection. Advanced Functional Materials, 2023, 33(36): 2303417. [119] WANG Z, WEI Y, LIU C,et al., Mn2+-activated Cs3Cu2I5 nano-scintillators for ultra-high resolution flexible X-ray imaging. Laser & Photonics Reviews, 2023, 17(6): 2200851. [120] CAO S, ZHU Y, HE P, et al. Cost-effective fabrication of copper(I) halide arrays with mitigated optical crosstalk for high-definition X-ray radiography. Chemical Engineering Journal, 2025, 508: 161139. [121] WANG H, ZHANG S, XIA Z.Composition modulation of Cs2ZrCl6-based scintillator film via vapor deposition for large-area X-ray imaging.Small Methods, 2025, DOI: 10.1002/smtd.202500273. [122] SONG X, LIU L, WAN P,et al. Ultrabroad dynamic all-solid-state radiation dose detector based on a 0D Cs3Cu2I5 perovskite-like single crystal. ACS Applied Electronic Materials, 2023, 5(12): 6805. [123] WANG Q, WANG C, SHI H, et al. Exciton-harvesting enabled efficient charged particle detection in zero-dimensional halides.Light: Science & Applications, 2024, 13(1): 190. [124] GAO L, LI Q, SUN J L, et al. Gamma-ray irradiation stability of zero-dimensional Cs3Cu2I5 metal halide scintillator single crystals. The Journal of Physical Chemistry Letters, 2023, 14(5): 1165. [125] MYKHAYLYK V, NAGORNY S S, NAHORNA V V,et al. Growth, structure, and temperature dependent emission processes in emerging metal hexachloride scintillators Cs2HfCl6 and Cs2ZrCl6. Dalton Transactions, 2022, 51(17): 6944. [126] WU J, DING J, HUANG X,et al. Fabrication and microstructure of Gd2O2S:Tb scintillation ceramics from water-bath synthesized nano-powders: influence of H2SO4/Gd2O3 molar ratio. Journal of Inorganic Materials, 2023, 38(4): 452. [127] WANG Q, WANG C, WANG Z,et al. Achieving efficient neutron and gamma discrimination in a highly stable 6Li-loaded Cs3Cu2I5 perovskite scintillator. The Journal of Physical Chemistry Letters, 2022, 13(39): 9066. [128] YAO L, GUI W, ZHOU X,et al. Bright lead-free Cs3Cu2I5 perovskite scintillators for thermal neutron detection. Materials Advances, 2023, 4(17): 3714. [129] LIAN L, QI W, DING H,et al. Highly luminescent zero-dimensional lead-free manganese halides for β-ray scintillation. Nano Research, 2022, 15(9): 8486. [130] WEI C H, DONG S, XU Z,et al. Controllable multi-exciton zero-dimensional antimony-based metal halides for white-light emission and β-ray detection. Angewandte Chemie International Edition, 2024, 63(51): e2024122. |
[1] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[2] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[3] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[4] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[5] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[6] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[7] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[8] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[9] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[10] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[11] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[12] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[13] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[14] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[15] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||