无机材料学报 ›› 2024, Vol. 39 ›› Issue (2): 186-194.DOI: 10.15541/jim20230327 CSTR: 32189.14.10.15541/jim20230327
所属专题: 【信息功能】柔性材料(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
收稿日期:
2023-07-19
修回日期:
2023-09-12
出版日期:
2023-09-12
网络出版日期:
2023-09-12
通讯作者:
沈国震, 教授. E-mail: gzshen@bit.edu.cn作者简介:
李 腊(1991-), 女, 副教授. E-mail: lali@bit.edu.cn
基金资助:
Received:
2023-07-19
Revised:
2023-09-12
Published:
2023-09-12
Online:
2023-09-12
Contact:
SHEN Guozhen, professor. E-mail: gzshen@bit.edu.cnAbout author:
LI La (1991-), female, associate professor. E-mail: lali@bit.edu.cn
Supported by:
摘要:
二维过渡金属碳/氮化物(MXenes)自2011年被首次报道以来, 凭借其特殊的二维层状结构、优异的导电性和电化学性能在能源、催化、传感、电磁屏蔽和微波吸收等领域吸引了极大关注。近几年, 随着对该材料认识的不断加深, 其在光电领域的研究也不断深入。与其它领域不同, 光电器件聚焦于延伸MXenes材料半导体性质, 通过设计表面官能团、精准控制层数等来打开材料带隙, 从而使其从金属性质转变为半导体性质。本文主要围绕MXenes材料的光电性质, 介绍其在柔性光电子器件中的应用, 系统阐述MXenes材料在透明电子器件、光电探测器、图像传感器、光电晶体管、人工神经视觉网络系统的应用前沿现状与趋势, 并展望了MXenes基柔性光电器件面临的挑战以及未来发展前景。
中图分类号:
李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194.
LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects[J]. Journal of Inorganic Materials, 2024, 39(2): 186-194.
图1 MXenes材料在柔性光电领域的应用[32⇓⇓-35]
Fig. 1 Application of MXenes in flexible optical electronic devices[32⇓⇓-35] Including transparent device, photodetector, image sensor array, transistor, and artificial neural network
图2 MXene基异质结型光电探测器[32]
Fig. 2 MXene based heterojunction materials for photodetector devices[32] (a-c) Inorganic-inorganic (MXene-Si) heterostructure; (d-f) Inorganic-organic (MXene-RNA) heterojunction
图3 纯MXene基光电探测器[44]
Fig. 3 Pure MXene based photodetector devices[44] (a) Synthesis process of Ti3C2Tx-C12H26; (b) Schematic diagram of the Ti3C2Tx-C12H26 based photodetector; (c) I-V curves of the fabricated devices; (d) Responsivity and specific detectivity of the photodetector
图4 Ti3C2Tx-RAN高像素图像传感器[34]
Fig. 4 MXene based 1024-pixel image sensor[34] (a) Optical photograph of Ti3C2Tx-RAN image sensor array; (b) Schematic diagram of multipixel image sensor imaging; (c) Deer pattern composed of 1024-pixel output by Ti3C2Tx-RAN photodetectors
图5 MXene基光电晶体管[51]
Fig. 5 MXene based photoelectric transistors[51] (a) Schematic process for MXene based photoelectric transistors; (b) Transfer curves of the MXene based photoelectric transistors under dark and different wavelength incident light; (c) UV response cycle test
图6 MXene基透明电子器件[35]
Fig. 6 MXene based transparent photodetector[35] (a) Schematic of synthesis process of leaf-based MXene electrodes; (b) Optical photograph of the leaf-based MXene electrodes under deformations; (c) Transmittance of the leaf-based MXene photodetector; (d) I-V curves and (e) responsivity of the MXene photodetector
图7 MXene基柔性人工神经视觉网络[33]
Fig. 7 Pure MXene based flexible artificial neural network[33] (a) Schematic diagram of human visual recognition system; (b) Schematic diagram of artificial neural network using image sensor array for image recognition; (c) Comparison of recognition rates of two kinds of artificial neural vision network; (d) Recognition probability maps of three letters; (e) The resulted recognition probability diagram
[1] |
DU J, XIE D, ZHANG Q, et al. A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy, 2021, 89: 106439.
DOI URL |
[2] |
DUAN Z, HU C, LIU W, et al. An all-MXene-based flexible, seamless system with integrated wireless charging coil, micro-supercapacitor, and photodetector. Advanced Materials Technologies, 2023, 8(15): 2300157.
DOI URL |
[3] |
GU L, PODDAR S, LIN Y, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581(7808): 278.
DOI |
[4] |
GU L, TAVAKOLI M M, ZHANG D, et al. 3D arrays of 1024- pixel image sensors based on lead halide perovskite nanowires. Advanced Materials, 2016, 28(44): 9713.
DOI URL |
[5] |
HOSSAIN M, KUMAR G S, PRABHAVA S N B, et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications. ACS Nano, 2018, 12(5): 4727.
DOI PMID |
[6] |
LI L D, GU L L, LOU Z, et al. ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 2017, 11(4): 4067.
DOI URL |
[7] | LI L, YE S, QU J, et al. Recent advances in perovskite photodetectors for image sensing. Small, 2021, 17(18): e2005606. |
[8] |
LI Q, VAN DE GROEP J, WANG Y, et al. Transparent multispectral photodetectors mimicking the human visual system. Nature Communications, 2019, 10: 4982.
DOI PMID |
[9] |
LIEN M B, LIU C H, CHUN I Y, et al. Ranging and light field imaging with transparent photodetectors. Nature Photonics, 2020, 14(3): 143.
DOI |
[10] |
LI L, LOU Z, SHEN G. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Advanced Functional Materials, 2018, 28(6): 1705389.
DOI URL |
[11] | LI H, DONG Z, ZHANG Y, et al. Recent progress and strategies in photodetectors based on 2D inorganic/organic heterostructures. 2D Materials, 2020, 8(1): 012001. |
[12] |
LI L, HU C, SHEN G. Low-dimensional nanostructure based flexible photodetectors: device configuration, functional design, integration, and applications. Accounts of Materials Research, 2021, 2(10): 954.
DOI URL |
[13] |
LV L, DANG W, WU X X, et al. Flexible short-wave infrared image sensors enabled by high-performance polymeric photodetectors. Macromolecules, 2020, 53(23): 10636.
DOI URL |
[14] |
LI L, CHEN D, SHEN G. All-Ti3C2Tx MXene based flexible on- chip microsupercapacitor array. Chemical Research in Chinese Universities, 2020, 36(4): 694.
DOI |
[15] |
WANG P, LIU S, LUO W, et al. Arrayed van der Waals broadband detectors for dual-band detection. Advanced Materials, 2017, 29(16): 1604439.
DOI URL |
[16] |
LI L, FU X, CHEN S, et al. Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics. ACS Applied Materials Interfaces, 2020, 12(13): 15362.
DOI URL |
[17] | SHI B, LI L, CHEN A, et al. Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nanomicro Letter, 2021, 14(1): 34. |
[18] |
XU X, LI L, LIU W, et al. Thermally chargeable supercapacitor with 3D Ti3C2Tx MXene hollow sphere based freestanding electrodes. Advanced Materials Interfaces, 2022, 9(24): 2201165.
DOI URL |
[19] |
QING H, CHENXU W, SHUANG Z, et al. Progress in structural tailoring and properties of ternary layered materials. Journal of Inorganic Materials, 2023, 38(8): 845.
DOI URL |
[20] | LI L, LIU W, JIANG K, et al. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nanomicro Letter, 2021, 13(1): 100. |
[21] |
LIU W, LI L, SHEN G. A Ti3C2Tx MXene cathode and redox-active electrolyte based flexible Zn-ion microsupercapacitor for integrated pressure sensing application. Nanoscale, 2023, 15(6): 2624.
DOI URL |
[22] | DU Z, LIU W, LIU J, et al. A thermally chargeable supercapacitor based on the g-C3N4-Doped PAMPS/PAA hydrogel solid electrolyte and 2D MOF@Ti3C2Tx MXene heterostructure composite electrode. Advanced Materials Interfaces, 2023, https://doi.org/10.1002/admi.202300266. |
[23] |
LIU W, LI L, HU C, et al. Intercalation of small organic molecules into Ti3C2Tx mxene cathodes for flexible high-volume-capacitance Zn-ion microsupercapacitor. Advanced Materials Technologies, 2022, 7(12): 2200158.
DOI URL |
[24] |
SHI B, CHEN L, JEN T C, et al. Vertical arrangement of Ti2CTx MXene nanosheets on carbon fibers for high-performance and flexible Zn-ion supercapacitors. ACS Applied Nano Materials, 2022, 6(1): 315.
DOI URL |
[25] |
MATHIS T S, MALESKI K, GOAD A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 2021, 15(4): 6420.
DOI URL |
[26] |
XU H, REN A, WU J, et al. Recent advances in 2D MXenes for photodetection. Advanced Functional Materials, 2020, 30(24): 2000907.
DOI URL |
[27] |
HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes' electronic properties through termination and intercalation. Nature Communications, 2019, 10: 522.
DOI PMID |
[28] | HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials, 2018, 30(52): e1804779. |
[29] |
JEON J, CHOI H, CHOI S, et al. Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad- spectrum photodetection. Advanced Functional Materials, 2019, 29(48): 1905384.
DOI URL |
[30] |
JIANG X, LIU S, LIANG W, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 2018, 12(2):1700229.
DOI URL |
[31] | VELUSAMY D B, EL-DEMELLAWI J K, EL-ZOHRY A M, et al. MXenes for plasmonic photodetection. Advanced Materials, 2019, 31(32): e1807658 |
[32] |
HU C, CHEN H, LI L, et al. Ti3C2Tx MXene-RAN van der Waals heterostructure-based flexible transparent NIR photodetector array for 1024 pixel image sensing application. Advanced Materials Technologies, 2022, 7(7): 2101639.
DOI URL |
[33] | HU C, WEI Z, LI L, et al. Strategy toward semiconducting Ti3C2Tx-MXene: phenylsulfonic acid groups modified Ti3C2Tx as photosensitive material for flexible visual sensory-neuromorphic system. Advanced Functional Materials, 2023, https://doi.org/10.1002/adfm.202302188. |
[34] |
CHERTOPALOV S, MOCHALIN V N. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano, 2018, 12(6): 6109.
DOI URL |
[35] | CHEN J, LI Z, NI F, et al. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Materilas Horizons, 2020, 7(7): 1828. |
[36] |
LIU Y Y, XIAO H, GODDARD W A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface- engineered MXenes. Journal of the American Chemical Society, 2016, 138(49): 15853.
DOI URL |
[37] | MONTAZERI K, CURRIE M, VERGER L, et al. Beyond gold: spin-coated Ti3C2-based MXene photodetectors. Advanced Materials, 2019, 31(43): e1903271. |
[38] | SONG W, CHEN J, LI Z, et al. Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Advanced Materials, 2021, 33(27): e2101059. |
[39] |
KANG Z, MA Y, TAN X, et al. MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors. Advanced Electronic Materials, 2017, 3(9): 1700165.
DOI URL |
[40] |
HU C, LI L, SHEN G. Flexible Transparent near-infrared photodetector based on 2D Ti3C2 MXene-Te van der Waal heterostructures. Chinese Journal of Chemistry, 2021, 39(8): 2141.
DOI URL |
[41] |
XU R X, MIN L L, QI Z M, et al. Perovskite transparent conducting oxide for the design of a transparent, flexible, and self- powered perovskite photodetector. ACS Applied Materials Interfaces, 2020, 12(14): 16462.
DOI URL |
[42] |
DENG W, HUANG H, JIN H, et al. All-sprayed-processable, large- area, and flexible perovskite/mxene-based photodetector arrays for photocommunication. Advanced Optical Materials, 2019, 7(6): 1801521.
DOI URL |
[43] |
ABDEL-KHALEK H, EL-SAMAHI M I, EL SALAM M A, et al. Fabrication and performance evaluation of ultraviolet photodetector based on organic/inorganic heterojunction. Current Applied Physics, 2018, 18(12): 1496.
DOI URL |
[44] |
HU C, DU Z, WEI Z, et al. Functionalized Ti3C2Tx MXene with layer-dependent band gap for flexible NIR photodetectors. Applied Physics Reviews 2023, 10(2): 021402.
DOI URL |
[45] |
HUANG F, LI J, XU Z, et al. A bilayer 2D-WS2/organic-based heterojunction for high-performance photodetectors. Nanomaterials, 2019, 9(9): 1312.
DOI URL |
[46] |
PYO S, KIM W, JUNG H I, et al. Heterogeneous integration of carbon-nanotube-graphene for high-performance, flexible, and transparent photodetectors. Small, 2017, 13(27): 1700918.
DOI URL |
[47] |
DUMCENCO D, OVCHINNIKOV D, MARINOV K, et al. Large- area epitaxial monolayer MoS2. ACS Nano, 2015, 9(4): 4611.
DOI URL |
[48] |
TAO J J, JIANG J, ZHAO S N, et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals p-n heterojunction for high- performance phototransistor. ACS Nano, 2021, 15(2): 3241.
DOI URL |
[49] |
THAKAR K, MUKHERJEE B, GROVER S, et al. Multilayer ReS2 photodetectors with gate tunability for high responsivity and high-speed applications. ACS Applied Materials Interfaces, 2018, 10(42): 36512.
DOI URL |
[50] |
NOH Y Y, KIM D Y, YASE K. Highly sensitive thin-film organic phototransistors: effect of wavelength of light source on device performance. Journal of Applied Physics, 2005, 98(7): 074505.
DOI URL |
[51] |
LI E, GAO C, YU R, et al. MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nature Communications, 2022, 13: 2898.
DOI |
[52] |
MARIANO M, MASHTALIR O, ANTONIO F Q, et al. Solution- processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale, 2016, 8(36): 16371.
DOI URL |
[53] |
YOON J, BAE GY, YOO S, et al. Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. Journal of Alloys and Compounds, 2020, 817: 152788.
DOI URL |
[54] | KIM S H, BAEK G W, YOON J, et al. A bioinspired stretchable sensory-neuromorphic system. Advanced Materials, 2021, 33(44): e2104690. |
[55] | RAN W, WANG L, ZHAO S, et al. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Advanced Materials, 2020, 32(16): e1908419. |
[56] |
WANG S, CHEN X, HUANG X, et al. Neuromorphic engineering for hardware computational acceleration and biomimetic perception motion integration. Advanced Intelligent Systems, 2020, 2(11): 2000124.
DOI URL |
[57] |
HU Z Y, ZHANG Y L, PAN C, et al. Miniature optoelectronic compound eye camera. Nature Communications, 2022, 13: 5634.
DOI |
[58] | TANG J, YUAN F, SHEN X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Advanced Materials, 2019, 31(49): e1902761. |
[59] |
ZHU Q B, LI B, YANG D D, et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nature Communications, 2021, 12: 1798.
DOI |
[1] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[2] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[3] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[4] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[5] | 尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185. |
[6] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[7] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
[8] | 陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214. |
[9] | 丁浩明, 陈科, 李勉, 李友兵, 柴之芳, 黄庆. 无机材料的“化学剪刀”结构编辑策略[J]. 无机材料学报, 2024, 39(2): 115-128. |
[10] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
[11] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[12] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[13] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[14] | 郑嘉乾, 卢霄, 鲁亚杰, 王迎军, 王臻, 卢建熙. 医用生物陶瓷的功能性生物适配机制及应用[J]. 无机材料学报, 2024, 39(1): 1-16. |
[15] | 蔡凯, 靳志文. 基于二维钙钛矿(PEA)2PbI4的光电探测器[J]. 无机材料学报, 2023, 38(9): 1069-1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||