[1] |
MURAT O, NICOLAS E, WANG B M, et al. Nanosecond protonic programmable resistors for analog deep learning. Science, 2022, 377: 539.
|
[2] |
LIANG F X, WANG T, HOU T H. Progress and benchmark of spiking neuron devices and circuits. Advanced Intelligent Systems, 2021, 3(8):2100007.
DOI
URL
|
[3] |
ABU S, MANUEL L G, RIDUAN K A, et al. Memory devices and applications for in-memory computing. Nature Nanotechnology, 2020, 15(7):529.
DOI
PMID
|
[4] |
YANG K, YANG J J, HUANG R, et al. Nonlinearity in memristors for neuromorphic dynamic systems. Small Science, 2021, 2: 2100049.
|
[5] |
ZHU J D, ZHANG T, YANG Y C, et al. A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 2020, 7: 011312.
|
[6] |
NGUYEN N A, SCHNEEGANS O, SALOT R, et al. An ultralow power LixTiO2-based synaptic transistor for scalable neuromorphic computing. Advanced Electronic Materials, 2022, 8(12):2200607.
DOI
URL
|
[7] |
ZHANG W Q, GAO B, TANG J S, et al. Neuro-inspired computing chips. Nature Electronics, 2020, 3: 371.
|
[8] |
XU H, LU J K, LI Y, et al. Improvement of weight stability in Li-ion-based electrolyte-gated transistor synapse by silica protective process. Applied Physics Letters, 2022, 121(11):113505.
DOI
URL
|
[9] |
LEE H, RYU D G, LEE G, et al. Vertical metal-oxide electrochemical memory for high-density synaptic array based high-performance neuromorphic computing. Advanced Electronic Materials, 2022, 8(8):2200378.
DOI
URL
|
[10] |
NAYEON K, HEEBUM K, HYUN W K, et al. Understanding synaptic characteristics of nonvolatile analog redox transistor based on mobile ion-modulated-electrolyte thickness model for neuromorphic applications. Applied Physics Letters, 2022, 121(7):072105.
DOI
URL
|
[11] |
LEE J, NIKAM R D, KWAK M, et al. Improved synaptic characteristics of oxide-based electrochemical random access memory at elevated temperatures using integrated micro-heater. IEEE Transactions on Electron Devices, 2022, 69: 2218.
DOI
URL
|
[12] |
REVANNATH D N, LEE J, CHOI W, et al. Ionic sieving through one-atom-thick 2D material enables analog nonvolatile memory for neuromorphic computing. Small, 2021, 17(44):2103543.
DOI
URL
|
[13] |
FENG G, JIANG J, ZHAO Y H, et al. A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Advanced Materials, 2020, 32(6):1906171.
DOI
URL
|
[14] |
LEE J, NIKAM R D, KWAK M, et al. Strategies to improve the synaptic characteristics of oxygen-based electrochemical random-access memory based on material parameters optimization. ACS Applied Materials & Interfaces, 2022, 14(11):13450.
|
[15] |
CHENG Y C, LI H, LIU B, et al. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small, 2020, 16(45):2005217.
DOI
URL
|
[16] |
LI Y, LU J K, SHANG D S, et al. Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Advanced Materials, 2020, 32(47):2003018.
DOI
URL
|
[17] |
LI Y, XUAN Z H, LU J K, et al. One transistor one electrolyte-gated transistor based spiking neural network for power-efficient neuromorphic computing system. Advanced Functional Materials, 2021, 31(26):2100042.
DOI
URL
|
[18] |
LI Y, XU H, LU J K, et al. Electrolyte-gated transistors with good retention for neuromorphic computing. Applied Physics Letters, 2022, 120(2):021901.
DOI
URL
|
[19] |
AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12(6):518.
DOI
|
[20] |
GRIFFITH K J, FORSE A C, GRIFFIN J M, et al. High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases. Journal of the American Chemical Society, 2016, 138(28):8888.
DOI
URL
|
[21] |
PRADEP P A, WADE G R. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. The Journal of Neuroscience, 1996, 16(18):5661.
DOI
URL
|
[22] |
ROBERT S Z, REGEHR W G. Short-term synaptic plasticity. Annual Review of Physiology, 2002, 64: 355.
|
[23] |
WANG I T, CHANG C C, CHIU L W, et al. 3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications. Nanotechnology, 2016, 27(36):365204.
DOI
URL
|
[24] |
JANG J W, PARK S, BURR G W, et al. Optimization of conductance change in Pr1-xCaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Letters, 2015, 36(5):457.
DOI
URL
|
[25] |
MCGANN J P. Associative learning and sensory neuroplasticity: how does it happen and what is it good for? Learning & Memory, 2015, 22(11):567.
|
[26] |
TRAXLER J, MADDEN V J, MOSELEY G L, et al. Modulating pain thresholds through classical conditioning. PeerJ, 2019, 7: 6486.
|
[27] |
MAURICIO R P, BITTERMAN M E. The role of contingency in classical conditioning. Psychological Review, 1990, 97(3):396.
PMID
|
[28] |
YU F, ZHU L Q, XIAO H, et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Advanced Functional Materials, 2018, 28(44):1804025.
DOI
URL
|