| [1] | LIU J, ZHOU M Y, ZHANG Y P , et al. Electrochemical oxidation of carbon at high temperature: principles and applications. Energ. Fuel, 2018,32:4107-4117. DOI    
																																					URL
 | 
																													
																						| [2] | CAO T Y, HUANG K, SHI Y X , et al. Recent advances in high-temperature carbon-air fuel cells. Energy Environ. Sci., 2017,10(2):460-490. DOI    
																																					URL
 | 
																													
																						| [3] | ZHOU Q, CAI W Z, ZHANG Y P , et al. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell. Biomass Bioenerg., 2016,91:250-258. DOI    
																																					URL
 | 
																													
																						| [4] | WANG X Q, LIU J, XIE Y M , et al. A high performance direct carbon solid oxide fuel cell stack for portable applications. Acta Phys. -Chim. Sin., 2017,33(8):1614-1620. DOI    
																																					URL
 | 
																													
																						| [5] | TANG Y B, LIU J . Fueling solid oxide fuel cells with activated carbon. Acta Phys. -Chim. Sin., 2010,26(5):1191-1194. DOI
 | 
																													
																						| [6] | TANG Y B, LIU J . Effect of anode and boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. Int. J. Hydrog.Energy, 2010,35(20):11188-11193. DOI    
																																					URL
 | 
																													
																						| [7] | XIE Y M, TANG Y B, LIU J . A verification of the reaction mechanism of direct carbon solid oxide fuel cells.[J]. Solid State Electr., 2012,17(1):121-127. DOI    
																																					URL
 | 
																													
																						| [8] | BAI Y H, LIU Y, TANG Y B , et al. Direct carbon solid oxide fuel cell—a potential high performance battery. Int. J. Hydrog.Energy, 2011,36(15):9189-9194. | 
																													
																						| [9] | JAMES L, ANDREW D . Fuel Cell Systems Explained. Second edition. England: The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, 2003: 6-14. | 
																													
																						| [10] | 刘江, 张莉, 刘燕, 苑莉莉 , 一种单片电解质固体氧化物燃料电池组. 中国 CN103956504A. 2014 -04-10. | 
																													
																						| [11] | YU M X, ZHANG J X, LI X G , et al. Optimization of the tape casting process for development of high performance alumina ceramics. Ceram. Int., 2015,41(10):14845-14853. DOI    
																																					URL
 | 
																													
																						| [12] | MOON H, KIM S, HYUN S , et al. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int. J. Hydrog.Energy, 2008,33(6):1758-1768. DOI    
																																					URL
 | 
																													
																						| [13] | HOWATT G N, BREEKENRIDGE R G, BROWNLOW J M . Fabrication of thin ceramic sheets for capacitors.[J]. Am. Ceram. Soc., 1947,30(8):237-242. DOI    
																																					URL
 | 
																													
																						| [14] | LEE S, LEE K, JANG Y H , et al. Fabrication of solid oxide fuel cells (SOFCs) by solvent-controlled co-tape casting technique. Int. J. Hydrog. Energy, 2017,42(3):1648-1660. | 
																													
																						| [15] | LOEY A, SALAM R D M, HUGH ROBERTSON . Pyrolysis of polyvinyl butyral (PVB) binder in thermoelectric green tapes. J. Eur. Ceram. Soc., 2000,20:1375-1383. DOI    
																																					URL
 | 
																													
																						| [16] | HEDAYAT N, PANTHI D, DU Y . Fabrication of tubular solid oxide fuel cells by solvent-assisted lamination and co-firing a rolled multilayer tape cast. Int.[J]. Appl. Ceram. Tec., 2018,15(2):307-314. DOI    
																																					URL
 | 
																													
																						| [17] | ALBANO M P, GARRIDO L B . Aqueous tape casting of yttria stabilized zirconia. Mater. Sci. Eng.,A, 2006,420(1/2):171-178. DOI    
																																					URL
 | 
																													
																						| [18] | MISTLER R E, TWINAME E R . Tape Casting: Theory and Practice. America: The American Ceramic Society, 2000: 37-39. | 
																													
																						| [19] | MICH LEK M, BLUGAN G, GRAULE T , et al. Comparison of aqueous and non-aqueous tape casting of fully stabilized ZrO2 suspensions. Powder Technol., 2015,274:276-283. DOI    
																																					URL
 | 
																													
																						| [20] | CEYLAN A, SUVACI E, MANDAL H . Role of organic additives on non-aqueous tape casting of Sialon ceramics.[J]. Eur. Ceram. Soc., 2011,31(1/2):167-173. DOI    
																																					URL
 | 
																													
																						| [21] | WANG C C, LUO L H, WU Y F , et al. A novel multilayer aqueous tape casting method for anode-supported planar solid oxide fuel cell. Mater. Lett., 2011,65(14):2251-2253. DOI    
																																					URL
 | 
																													
																						| [22] | NISHIHORA R K, RACHADEL P L, QUADRI M G N , et al. Manufacturing porous ceramic materials by tape casting—a review.[J]. Eur. Ceram. Soc., 2018,38(4):988-1001. DOI    
																																					URL
 | 
																													
																						| [23] | CAI W Z, ZHOU Q, XIE Y M , et al. A facile method of preparing Fe-loaded activated carbon fuel for direct carbon solid oxide fuel cells. Fuel, 2015,159:887-893. DOI    
																																					URL
 | 
																													
																						| [24] | CAI W Z, LIU J, XIE Y M , et al. An investigation on the kinetics of direct carbon solid oxide fuel cells.[J]. Solid State Electr., 2016,20(8):2207-2216. DOI    
																																					URL
 | 
																													
																						| [25] | JOON H K, GYEONG M C . Mixed ionic and electronic conductivity of [(ZrO2)0.92(Y2O3)0.08]1-y(MnO1.5)y. Solid State Ionics, 2000,130:157-168. | 
																													
																						| [26] | LI X N, LIANG J W, HOU Z G , et al. The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode.[J]. Power Sources, 2015,293:868-875. DOI    
																																					URL
 |