无机材料学报 ›› 2023, Vol. 38 ›› Issue (6): 693-700.DOI: 10.15541/jim20220551 CSTR: 32189.14.10.15541/jim20220551
所属专题: 【能源环境】燃料电池(202409); 【结构材料】高熵陶瓷(202409)
郭天民1(), 董江波2, 陈正鹏2, 饶睦敏2, 李明飞2, 李田1, 凌意瀚1(
)
收稿日期:
2022-09-21
修回日期:
2022-11-13
出版日期:
2022-12-09
网络出版日期:
2022-12-09
通讯作者:
凌意瀚, 研究员. E-mail: lyhyy@cumt.edu.cn作者简介:
郭天民(1991-), 男, 硕士. E-mail: 277263262@qq.com
GUO Tianmin1(), DONG Jiangbo2, CHEN Zhengpeng2, RAO Mumin2, LI Mingfei2, LI Tian1, LING Yihan1(
)
Received:
2022-09-21
Revised:
2022-11-13
Published:
2022-12-09
Online:
2022-12-09
Contact:
LING Yihan, professor. E-mail: lyhyy@cumt.edu.cnAbout author:
GUO Tianmin (1991-), male, Master. E-mail: 277263262@qq.com
Supported by:
摘要:
中温固体氧化物燃料电池(IT-SOFC)有助于国家的碳中和战略, 但其阴极材料难以兼顾热兼容性和催化活性。为此, 基于多元素耦合的高熵策略, 本研究合成了高熵阴极材料GdBa(Fe0.2Mn0.2Co0.2Ni0.2Cu0.2)2O5+δ(HE-GBO), 具有双过氧化物结构, 与Gd0.1Ce0.9O2-δ(GDC)有良好的化学兼容性, 协调了与催化活性之间的平衡性。采用HE-GBO阴极的对称电池在800 ℃下的极化电阻(Rp)为1.68 Ω·cm2, 而HE-GBO-GDC(质量比7 : 3)复合阴极的Rp因引入GDC而显著降低(800 ℃下Rp为0.23 Ω·cm2)。采用HE-GBO和HE-GBO-GDC阴极组装树枝状微通道阳极支撑单电池,在800 ℃的最大功率密度分别达到972.12和1057.06 mW/cm2, 使用高熵阴极可以进一步提高电池性能。这些结果表明多尺度优化有助于开发高性能的IT-SOFC阴极材料。
中图分类号:
郭天民, 董江波, 陈正鹏, 饶睦敏, 李明飞, 李田, 凌意瀚. 中温固体氧化物燃料电池的高熵双钙钛矿阴极材料: 兼容性与活性研究[J]. 无机材料学报, 2023, 38(6): 693-700.
GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC[J]. Journal of Inorganic Materials, 2023, 38(6): 693-700.
Fig. 1 (a) XRD patterns and (b) corresponding magnified area of 2θ=45°-50° of GBCO and HE-GBO powders calcined at 1150 ℃ for 3 h, and (c) schematic diagram of the HE-GBO double perovskite structure
Fig. 4 EIS plots of symmetrical single cells with (a) HE-GBO and (b) HE-GBO-GDC cathodes measured from 800 to 600 ℃ in air Colorful figures are available on website
Fig. 5 Cross-section morphologies of single cell with (a) HE-GBO and (b) HE-GBO-GDC after 100 h long-term test, and (c, d) their magnified morphologies, respectively
Fig. 8 EIS plots of single cells with (a) HE-GBO and (b) HE-GBO-GDC cathodes measured from 800 ℃ to 600 ℃ in wet H2 (~3% H2O), (c) simulated polarization resistance, and (d) Arrhenius plots of single cells with HE-GBO and HE-GBO-GDC cathodes Colorful figures are available on website
[1] |
STEELE B C H, HEINZEL A. Materials for fuel-cell technologies. Nature, 2001, 414(6861):345.
DOI URL |
[2] | GUO M, TU H, LI S, YU Q, et al. Fabrication and characterization of functionally graded cathodes based on in-situ formed La0.6Sr0.4CoO3-δ for intermediate temperature SOFCs. Journal of Inorganic Materials, 2014, 29(6):621. |
[3] |
LING Y, GUO T, GUO Y, et al. New two-layer Ruddlesden-Popper cathode materials for protonic ceramics fuel cells. Journal of Advanced Ceramics, 2021, 10(5):1052.
DOI |
[4] |
LIU F, ZHAO Z, MA Y, et al. Robust Joule-heating ceramic reactors for catalytic CO oxidation. Journal of Advanced Ceramics, 2022, 11(7):1163.
DOI |
[5] |
ZHOU Q, WANG F, SHEN Y, et al. Performances of LnBaCo2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(8): 2174.
DOI URL |
[6] |
JIN H, WANG H, ZHANG H, et al. Synthesis and characterization of GdBaCo2O5+δ cathode material by glycine-nitrate process. Journal of Inorganic Materials, 2012, 27(7):751.
DOI URL |
[7] |
TAN Y, WANG R, HU X, et al. Comparison of the oxygen reduction mechanisms in a GBCO-SDC-impregnated cathode and a GBCO cathode. Journal of Applied Electrochemistry, 2019, 49(10):1035.
DOI |
[8] |
ZHOU Q, ZHANG Y, SHEN Y, et al. Layered perovskite GdBaCuCoO5+δ cathode material for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2010, 157(5):B628.
DOI URL |
[9] |
DING X, CUI C, GUO L. Thermal expansion and electrochemical performance of La0.7Sr0.3CuO3-δ-Sm0.2Ce0.8O2-δ composite cathode for IT-SOFCs. Journal of Alloys and Compounds, 2009, 481(1/2):845.
DOI URL |
[10] |
KONG X, LIU G, YI Z, et al. NdBaCu2O5+δ and NdBa0.5Sr0.5Cu2O5+δ layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40(46):16477.
DOI URL |
[11] |
BURLEY J, MITCHELL J, SHORT S, et al. Structural and magnetic chemistry of NdBaCo2O5+δ. Journal of Solid State Chemistry, 2003, 170(2):339.
DOI URL |
[12] |
ASAI K, YONEDA A, YOKOKURA O, et al. Two spin-state transitions in LaCoO3. Journal of the Physical Society of Japan, 1998, 67(1):290.
DOI URL |
[13] |
KIM Y, MANTHIRAM A. Layered LnBaCo2-xCuxO5+δ (0≤x≤1.0) perovskite cathodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2010, 158(3):B276.
DOI URL |
[14] |
HUANG X, FENG J, ABDELLATIF H R, et al. Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+δ (x=0, 0.5, 1) as promising cathodes for IT-SOFCs. International Journal of Hydrogen Energy, 2018, 43(18):8962.
DOI URL |
[15] |
JIN F, LI J, WANG Y, et al. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+δ as a novel cathode for intermediate-temperature solid-oxide fuel cell. Ceramics International, 2018, 44(18):22489.
DOI URL |
[16] |
LI L, JIN F, SHEN Y, et al. Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182: 682.
DOI URL |
[17] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015, 6(1):8485.
DOI PMID |
[18] |
YANG Y, MA L, GAN G Y, et al. Investigation of thermodynamic properties of high entropy (TaNbHfTiZr)C and (TaNbHfTiZr)N. Journal of Alloys and Compounds, 2019, 788: 1076.
DOI URL |
[19] |
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics. Nature Reviews Materials, 2020, 5(4):295.
DOI |
[20] |
HAN X, YANG Y, FAN Y, et al. New approach to enhance Sr-free cathode performance by high-entropy multi-component transition metal coupling. Ceramics International, 2021, 47(12):17383.
DOI URL |
[21] |
YANG Y, BAO H, NI H, et al. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode. Journal of Power Sources, 2021, 482: 228959.
DOI URL |
[22] | LING Y, HAN X, YANG Y, et al. Stable high-entropy double perovskite cathode SmBa(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)2O5+δ for intermediate- temperature solid oxide fuel cells. Journal of the Chinese Ceramic Society, 2022, 50(1):219. |
[23] |
SONG W, MA Z, YANG Y, et al. Characterization and polarization DRT analysis of direct ethanol solid oxide fuel cells using low fuel partial pressures. International Journal of Hydrogen Energy, 2020, 45(28):14480.
DOI URL |
[24] |
SHAO X, RICKARD W D, DONG D, et al. High performance anode with dendritic porous structure for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43(37):17849.
DOI URL |
[25] |
ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17):4876.
DOI URL |
[26] |
KIM J H, MANTHIRAM A. Layered NdBaCo2-xNixO5+δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54(28):7551.
DOI URL |
[27] |
ZHAO Z, CHEN H, XIANG H, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. Journal of Advanced Ceramics, 2020, 9(3):303.
DOI |
[28] |
LEE S J, KIM D S, JO S H, et al. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+δ-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 2012, 38: S493.
DOI URL |
[29] |
LI S, ZHANG L, XIA T, et al. Synergistic effect study of EuBa0.98Co2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate- temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 771: 513.
DOI URL |
[30] |
YANG Y, LIU Y, CHEN Z, et al. Enhanced conversion efficiency and coking resistance of solid oxide fuel cells with vertical- microchannel anode fueled in CO2 assisted low-concentration coal-bed methane. Separation and Purification Technology, 2022, 288: 120665.
DOI URL |
[31] | DAI T, SUN B, YI Q, et al.The effect of pore former on the microstructure and performance of SOFC cathode. Guangzhou Chemical Industry, 2013, 41: 7. |
[32] |
LI T, YANG Y, WANG X, et al. Enhance coking tolerance of high-performance direct carbon dioxide-methane solid oxide fuel cells with an additional internal reforming catalyst. Journal of Power Sources, 2021, 512: 230533.
DOI URL |
[33] |
KORNELY M, MENZLER N, WEBER A, et al. Degradation of a high performance SOFC cathode by Cr-poisoning at OCV-conditions. Fuel Cells, 2013, 13(4):506.
DOI URL |
[34] |
LIU B, MUROYAMA H, MATSUI T, et al. Analysis of impedance spectra for segmented-in-series tubular solid oxide fuel cells. Journal of the Electrochemical Society, 2010, 157(12): B1858.
DOI URL |
[1] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[2] | 叶梓滨, 邹高昌, 吴琪雯, 颜晓敏, 周明扬, 刘江. 阳极支撑型锥管串接式直接碳固体氧化物燃料电池组的制备及性能[J]. 无机材料学报, 2024, 39(7): 819-827. |
[3] | 张琨, 王宇, 朱腾龙, 孙凯华, 韩敏芳, 钟秦. LaNi0.6Fe0.4O3阴极接触材料导电特性调控及其对SOFC电化学性能的影响[J]. 无机材料学报, 2024, 39(4): 367-373. |
[4] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
[5] | 薛顶喜, 伊炳尧, 李国君, 马帅, 刘克勤. 功能梯度阳极固体氧化物燃料电池热应力数值模拟研究[J]. 无机材料学报, 2024, 39(11): 1189-1196. |
[6] | 樊帅, 金天, 张山林, 雒晓涛, 李成新, 李长久. Li2O烧结助剂对固体氧化物燃料电池LSGM电解质烧结特性及离子电导率的影响[J]. 无机材料学报, 2022, 37(10): 1087-1092. |
[7] | 曹丹,周明扬,刘志军,颜晓敏,刘江. 阳极支撑质子导体电解质固体氧化物燃料电池的制备及其性能研究[J]. 无机材料学报, 2020, 35(9): 1047-1052. |
[8] | 夏天, 孟燮, 骆婷, 占忠亮. 固体氧化物燃料电池LaxSr2-3x/2Fe1.5Ni0.1Mo0.4O6-δ阳极性能研究[J]. 无机材料学报, 2020, 35(5): 617-622. |
[9] | 李凯, 李霄, 李箭, 谢佳苗. 基于应力分析Ni-Fe合金支撑固体氧化物燃料电池结构稳定性研究[J]. 无机材料学报, 2019, 34(6): 611-617. |
[10] | 汪维, 苑莉莉, 丘倩媛, 周明扬, 刘美林, 刘江. 流延法制备单片式直接碳固体氧化物燃料电池组及其性能研究[J]. 无机材料学报, 2019, 34(5): 509-514. |
[11] | 夏天, 孟燮, 骆婷, 占忠亮. Ca掺杂Sr2Fe1.5Mo0.5O6-δ材料的合成与作为对称固体氧化物燃料电池电极催化剂的性能研究[J]. 无机材料学报, 2019, 34(10): 1109-1114. |
[12] | 李斯琳, 屠恒勇, 于立军. 中温固体氧化物燃料电池Nd2NiO4+δ-Ce0.8Gd0.2O2-δ复合阴极性能研究[J]. 无机材料学报, 2017, 32(5): 469-475. |
[13] | 徐红梅, 张 华, 李 恒, 简耀永, 谢 武, 王一平, 徐铭泽. 纳米结构LSCF-SDC复合阴极的制备及其氧还原机理研究[J]. 无机材料学报, 2017, 32(4): 379-385. |
[14] | 谢佳苗, 王峰会. 基于热应力分析的固体氧化物燃料电池阳极功能层优化设计[J]. 无机材料学报, 2017, 32(4): 400-406. |
[15] | 杨 洋, 田 冬, 丁岩芝, 卢肖永, 林 彬, 陈永红. 基于Pr0.6Sr0.4Co0.2Fe0.8O3-δ对称固体氧化物燃料电池的性能优化研究[J]. 无机材料学报, 2017, 32(3): 235-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||