2022年度中国知网高下载论文
压电陶瓷作为一类重要的功能陶瓷材料, 具备高强度、高硬度、耐腐蚀等优点, 可实现机械能和电能间的相互转换, 常被用于制备传感器、驱动器、电容器等压电器件, 在海洋探测、生物医疗、电子通讯等高端装备中发挥着重要作用。针对高端技术领域对压电功能器件智能化、集成化、轻量化的发展需求, 压电陶瓷的外形和结构越来越复杂。注浆、注射、模压、切割等传统的压电陶瓷制造工艺, 大多需借助模具或刀具完成, 很难甚至无法制造具有中空、悬垂等复杂结构的压电陶瓷, 制约了压电功能器件的进一步发展。增材制造技术基于逐层累加原理可实现任意复杂结构快速定制, 具有成型效率高、无需模具等优点, 可满足个性化、整体化、复杂化制造需求, 近年来受到国内外压电陶瓷领域研究人员的广泛关注。本文从粉体、浆料、块材三种原材料形态角度, 综述了当前增材制造压电陶瓷的主要工艺种类及发展现状, 综合对比了各种工艺成型特点; 介绍了增材制造压电陶瓷在不同领域的应用进展; 最后, 总结和展望了增材制造压电陶瓷所面临的挑战和未来可能的发展趋势。
压电陶瓷是一种可以实现机械信号和电信号相互转换的功能陶瓷。由压电陶瓷与有机相构成的复合材料具有不同的宏观连接方式, 这不仅决定了压电器件广泛的应用场合, 而且推动了压电陶瓷材料和器件多样化的成型技术发展。与传统成型技术相比, 增材制造技术的最大优势在于无需模具即可实现外形复杂的小批量样品快速成型, 这与多样化的压电陶瓷及其器件研发需求十分契合, 同时因其样品后续加工量少、原材料利用率高、无需切削液的特点, 得到了学术界和工业界的广泛关注。在陶瓷材料增材制造领域, 功能陶瓷和器件的研究仍在增长期。本文从不同增材制造技术角度, 探讨和对比现阶段无铅和含铅压电陶瓷增材制造的发展历史、原料制备、外形设计、功能特性检测及试样的应用, 并根据现阶段各增材制造技术的优、劣势对其未来进行了展望。
21世纪以来, 能源短缺和环境污染一直是人类面临的重大挑战。光催化二氧化碳(CO2)还原, 通过半导体捕获光能, 获得碳氢化合物太阳能燃料是解决能源危机并推动碳循环的有前景的策略之一。然而, 活性低、产物选择性差又极大地限制了这一技术的实际应用。因此, 调控产物选择性并提高光催化效率、加深对CO2还原反应机理的理解具有重要意义。近年来, 超薄材料以其较高的比表面积, 丰富的不饱和配位的表面原子, 较短的电荷从内部到表面的迁移路径, 以及可裁剪的能带结构受到了广泛关注, 并在光催化CO2还原领域取得了可喜的成果。本文在总结光催化CO2还原反应机理的基础上, 介绍了通过构建异质结构、设计Z型系统、引入助催化剂以及缺陷工程等策略促进超薄纳米结构电子空穴分离和调控其电荷迁移路径的研究成果, 并指出了提高光催化CO2还原效率和优化产物选择性的发展前景与挑战。
特种陶瓷广泛应用于航天航空、电子信息、新能源、机械、化工等新兴工业领域, 其高温制备过程仍以传统燃气窑炉和电加热炉为主; 碳排放高、能耗大, 节能减排形势严峻。当前, 我国面临实现“双碳”目标的巨大压力, 研究推广清洁高效的加热技术迫在眉睫。微波加热是利用材料自身对微波进行吸收, 将电磁能转化为热能, 能量的转移发生在分子水平上, 通过这种方式, 加热在整个材料内外同时产生, 整个材料体系中的温度梯度非常低。除体积加热外, 选择性加热、功率再分配、热剧变以及微波等离子效应等也是微波烧结的显著特征。微波加热具有节能环保、改善制品性能、减少燃烧碳排放等优点, 国内外有许多关于微波合成各种氧化物、碳化物、氮化物陶瓷粉体和微波烧结陶瓷复合材料的报道。本文首先对微波和微波混合烧结的基本理论进行综述, 然后介绍了微波加热制备陶瓷粉体与微波烧结制备陶瓷材料的最新研究进展, 最后总结了微波加热在陶瓷工程制品烧结中的一些研究成果, 体现出微波烧结的优越性, 并提出了微波烧结制备特种陶瓷的关键问题和今后的发展方向。
电催化二氧化碳还原反应可将温室气体二氧化碳转化为化工原料或者有机燃料, 为克服全球变暖和电能向化学能转化提供了一条可行途径。该技术的主要挑战是产物分布广, 导致单一产物选择性低, 而调控催化剂的表面性质是解决这一难题的可行策略。本研究通过对氧化亚铜、硫化亚铜进行氧化制备表面性质不同的氧化铜, 其中, 氧化硫化亚铜制得的CuO-FS催化剂提高了电还原二氧化碳的活性和还原产物甲酸的选择性。该催化剂表现出较高的总电流密度, 而且在一个较大的测试电压范围(-0.8 ~ -1.1 V)内, 甲酸的法拉第效率可以保持在70%以上, 在-0.9 V时达到最大值78.4%。反应机理探究表明, CuO-FS优异的电还原二氧化碳性能归因于其较大的电化学活性表面积提供了大量表面活性位点, 产生较高的总电流密度; 而且电催化过程中催化剂表面产生较少的零价Cu, 减少了乙烯的生成, 使产物更集中于甲酸。
采用前驱体浸渍热解(PIP)工艺制备了ZrC-SiC、ZrB2-ZrC-SiC和HfB2-HfC-SiC复相陶瓷基复合材料, 复合材料中的超高温陶瓷相均呈现出亚微米/纳米均匀弥散分布的特征, 对比研究了上述材料在大气等离子和高温电弧风洞考核环境中的超高温烧蚀行为。研究结果表明, 超高温复相陶瓷基复合材料相比传统的未改性SiC基复合材料, 烧蚀后复合材料表面原位生成了固液两相致密氧化膜, 两相协同作用实现了抗冲蚀和抗氧化的效果, 对液相SiO2的流失起到了阻碍作用, 提升了材料的超高温烧蚀性能。在此基础上, 提出了设计超高温复相陶瓷基复合材料应考虑的因素。上述研究结果对陶瓷基复合材料在超高温有限寿命领域的应用具有一定的指导意义。
陶瓷以其优异的热物理化学性能在航空航天、能源、环保以及生物医疗等领域具有极大的应用潜力。随着这些领域相关技术的快速发展, 其核心零件部件外形结构设计日益复杂、内部组织逐步走向定制化、梯度化。陶瓷具有硬度高、脆性大等特点, 较难通过传统的加工成形方法实现异形结构零件的制造, 最终限制了陶瓷材料的工程应用范围。激光增材制造技术作为一种快速发展的增材制造技术, 在复杂精密陶瓷零部件的制造中具有显著优势: 无模、精度高、响应快以及周期短, 同时能够实现陶瓷零件组织结构灵活调配, 有望解决上述异形结构陶瓷零件成形问题。本文综述了多种基于粉末成形的激光增材制造陶瓷技术: 基于粉末床熔融的激光选区烧结和激光选区熔化; 基于定向能量沉积的激光近净成形技术。主要讨论了各类激光增材陶瓷技术的成形原理与特点, 综述了激光选区烧结技术中陶瓷坯体后处理致密化工艺以及激光选区熔化和激光近净成形技术这两种技术中所打印陶瓷坯体基体裂纹开裂行为分析及其控制方法的研究进展, 对比分析了激光选区烧结、激光选区熔化以及激光近净成形技术在成形陶瓷零件的技术特征, 最后展望了激光增材制造陶瓷技术的未来发展趋势。