无机材料学报 ›› 2021, Vol. 36 ›› Issue (10): 1022-1030.DOI: 10.15541/jim20210074 CSTR: 32189.14.10.15541/jim20210074
所属专题: 【虚拟专辑】新型材料表征技术(2020~2021)
夏芳芳1(), 王发坤1, 胡海龙2, 许翔1, 李阳1, 翟天佑1(
)
收稿日期:
2021-02-05
修回日期:
2021-03-26
出版日期:
2021-10-20
网络出版日期:
2021-06-01
通讯作者:
翟天佑, 教授. E-mail: zhaity@hust.edu.cn
作者简介:
夏芳芳(1986-), 女, 工程师. E-mail: xiafangfang@hust.edu.cn
基金资助:
XIA Fangfang1(), WANG Fakun1, HU Hailong2, XU Xiang1, LI Yang1, ZHAI Tianyou1(
)
Received:
2021-02-05
Revised:
2021-03-26
Published:
2021-10-20
Online:
2021-06-01
Contact:
ZHAI Tianyou, professor. E-mail: zhaity@hust.edu.cn
About author:
XIA Fangfang(1986-), female, engineer. E-mail: xiafangfang@hust.edu.cn
Supported by:
摘要:
二次谐波作为非线性光学的重要分支, 逐渐成为表征晶体结构的重要手段之一。在众多表征方法中, 二次谐波因其无损检测、高稳定性、可调谐性、超快响应、偏振敏感性、通用性、操作简单等特点被广泛应用于二维材料结构表征, 为二维材料的物性研究和功能应用提供了重要信息, 大大推动了二维材料基础研究的快速发展。本文综述了近几年二次谐波在二维材料结构表征中的研究, 简述了二次谐波产生原理, 介绍了飞秒激光器接入共聚焦拉曼光谱仪产生二次谐波测试装置, 分别讨论了二次谐波在二维材料的层间堆垛层数、层间堆垛角度、单层二维材料晶界及晶体取向表征方面的应用。同时, 本文还介绍了采用二次谐波强度直接、灵敏地检测晶体中应变幅度以及通过二次谐波信号变化跟踪材料中的缺陷变化, 接着讨论了二次谐波与拉曼光谱、光致发光的多维度关联分析在材料全面深度表征方面的重要性。最后展望了二次谐波未来在材料结构表征中的潜在研究方向。
中图分类号:
夏芳芳, 王发坤, 胡海龙, 许翔, 李阳, 翟天佑. 二次谐波在二维材料结构表征中的应用[J]. 无机材料学报, 2021, 36(10): 1022-1030.
XIA Fangfang, WANG Fakun, HU Hailong, XU Xiang, LI Yang, ZHAI Tianyou. Application of Second Harmonic Generation in Characterization of 2D Materials[J]. Journal of Inorganic Materials, 2021, 36(10): 1022-1030.
图3 二次谐波表征不同堆垛层数的二维层状晶体
Fig. 3 Characterization of 2D layered crystals with different stacking layers by SHG (a) Side view and top view of atomic structure illustration of typical layered WS2 with 2H and 3R stacking; (b-c) Optical images of 2H and 3R phase WS2; (d-e) SHG intensity of 2H and 3R phase WS2 as a function of layer numbers[40]; (f) SHG intensity of 2H and 3R phase MoS2 as a function of layer numbers[41]
图4 二次谐波表征层间堆垛角度
Fig. 4 Characterization of stacking angle between layers by SHG (a) Schematic of SHG process in second harmonic generation of bilayer thin film; (b) Atomic structure of artificially stacked bilayer; (c-d) Optical images for stacked bilayers with different stacking angles and their corresponding SH intensities[42]
图5 二次谐波表征二维材料晶界及晶体取向
Fig. 5 Characterization of the grain boundary and crystal orientation of two-dimensional materials by SHG (a-b) Optical image and SHG image of a polycrystalline monolayer of MoS2 of the same area; (c) Polarized-SHG image showing the crystal orientations[43]; (d) Dark-field SHG imaging of a monolayer MoSe2[44]
图6 二次谐波表征晶界及晶粒的形成机理
Fig. 6 Characterization of the grain boundary by SHG and analysis of grain formation mechanism (a) Optical image and SHG mapping of the flake with boundary; Inset: illustration of the two edges growth at the boundary; (c) Illustration of the armchair directions of the two grains[24]
图7 二次谐波表征二维材料应变
Fig. 7 Characterization of the strain of 2D materials by SHG (a) Schematic of strain apparatus and SHG process in monolayer MoSe2 under uniaxial tensile strain; (b) SHG spectra under different strain; (c) Evolution of normalized SHG intensity with strain[46]; (d, e) Schematic illustration of two-point bending method and SHG patterns for applied tensile strains of 0.1%, 0.5%, and 0.95%[47]
图8 二次谐波表征二维材料的缺陷
Fig. 8 Characterization of the defects of 2D materials by SHG (a-c) Optical image, fluorescence image and second harmonic mapping image of monolayer WS2[51]
图9 二次谐波与光致发光、拉曼光谱联合表征二维材料(MoS2/WS2异质结)
Fig. 9 Characterization of 2D materials (MoS2/WS2 heterojunction) by SHG combined with photoluminescence and Raman spectroscopy (a) Atomic structure diagram; (b-c) Optical image and TEM image; (d, g) SHG intensity and mapping; (e, h) photoluminescence spectra at different positions; (f, i) Corresponding Raman spectra[52]
[1] |
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11):699-712.
DOI URL |
[2] |
WANG Y, XIAO J, YANG S, et al. Second harmonic generation spectroscopy on two-dimensional materials [Invited]. Optical Materials Express, 2019, 9(3):1136-1149.
DOI URL |
[3] |
ZHAI T Y, GAN L, WANG R Y. ReX2 (X=S,Se): a new opportunity for development of two-dimensional anisotropic materials. Journal of Inorganic Materials, 2019, 34(1):1-16.
DOI URL |
[4] |
MENG J H, GAO M L, ZHANG X W. Research progress of direct growth of two-dimensional hexagonal boron nitride on dielectric substrates. Journal of Inorganic Materials, 2019, 34(12):1245-1256.
DOI URL |
[5] | CHEN W, OUYANG J, YI X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Advanced Materials, 2018, 30(3):1703458. |
[6] |
HRISTU R, EFTIMIE L G, STANCIU S G, et al. Quantitative second harmonic generation microscopy for the structural characterization of capsular collagen in thyroid neoplasms. Biomed Opt Express, 2018, 9(8):3923-3936.
DOI URL |
[7] |
DENG X, WILLIAMS E D, THOMPSON E W, et al. Second-harmonic generation from biological tissues: effect of excitation wavelength. Scanning, 2002, 24(4):175-178.
DOI URL |
[8] |
ODIN C, LE GRAND Y, RENAULT A, et al. Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy. Journal of Microscopy, 2008, 229(1):32-38.
DOI URL |
[9] | LIN L, CHEN G, CHEN Z, et al. Prognostic value of tumor stromal collagen features in patients with hepatocellular carcinoma revealed by second-harmonic generation microscopy. Experimental and Molecular Pathology, 2020, 116:104513. |
[10] | SURIYA M, MANI MARAN M, BOAZ B M, et al. Crystal growth, structural, optical and piezoelectric investigations on novel B4AAT (bis-4-acetylanilinium tartrate): a phase matchable second and third-order NLO single crystal for optoelectronic and nonlinear optical device applications. Optical Materials, 2020, 108:110042. |
[11] | SIVAKUMAR T, ANBARASAN R, KALYANA SUNDAR J, et al. Enhancing the SHG effect of zinc chloride-doped DAST single crystals: new potential materials for nonlinear optical device applications. Journal of Materials Science: Materials in Electronics, 2020, 31(15):12943-12954. |
[12] | BHOWMIK G, AN Y Q, SCHUJMAN S, et al. Optical second harmonic generation from silicon (100) crystals with process tailored surface and embedded silver nanostructures for silicon nonlinear nanophotonics. Journal of Applied Physics, 2020, 128(16):165106. |
[13] | PACKIYA RAJ M, RAVI KUMAR S M, SIVAVISHNU D, et al. Synthesis, growth and optical, mechanical, electrical and surface properties of an inorganic new nonlinear optical crystal: sodium cadmium tetra chloride (SCTC). Crystal Research and Technology, 2018, 53(2):1700271. |
[14] | HONG X, HU G, ZHAO W, et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides. Research (Wash D C), 2020, 2020:9085782. |
[15] | PANTAZIS P, MALONEY J, WU D, et al. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proceeding of National Academy of Sciences of the United States of America, 2010, 107(33):14535-14540. |
[16] |
YUAN F, SUN S, HUANG Y, et al. Improvement of second-harmonic generation induced by structural distortions in Nb doped YCa9(VO4)7 crystals. Journal of Alloys and Compounds, 2017, 726:860-865.
DOI URL |
[17] | ZHANG Z, ZHANG L, GOGNA R, et al. Large enhancement of second-harmonic generation in MoS2 by one dimensional photonic crystals. Solid State Communications, 2020, 322:114043. |
[18] | YU Y, WANG J, WEI Y M, et al. Precise characterization of self-catalyzed III-V nanowire heterostructures via optical second harmonic generation. Nanotechnology, 2017, 28(39):395701. |
[19] | HUANG W J, HOU H Y, CHEN X B, et al. Synthesis of InSe nanoflakes with near-infrared photoresponse grown by chemical vapor deposition. Chemical Research in Chinese Universities. 2020, 41(4):682-689. |
[20] | ZENG Z X S, WANG X, PAN A L. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18):184210. |
[21] | YAN C, GAN L, ZHOU X, et al. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Advanced Functional Materials, 2017(27):1702918. |
[22] |
WEN X, GONG Z, LI D. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat, 2019, 1(3):317-337.
DOI URL |
[23] | 李家泽, 朱宝亮, 魏光辉. 晶体光学. 北京: 北京理工大学出版社, 1989: 343-390. |
[24] | HU X, HUANG P, JIN B, et al. Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. Journal of The American Chemical Society, 2018, 140(40):12909-12914. |
[25] | 张克从, 王希敏. 非线性光学晶体材料科学. 北京: 科学出版社, 2005: 26-77. |
[26] | SU J, WANG M, LI Y, et al. Sub-millimeter-scale monolayer p-type H-phase VS2. Advanced Functional Materials, 2020, 30(17):2000240. |
[27] | HUANG W, GAN L, LI H, et al. Phase-engineered growth of ultrathin inse flakes by chemical vapor deposition for high- efficiency second harmonic generation. Chemistry, 2018, 24(58):15678-15684. |
[28] | YANG D, HU X, ZHUANG M, et al. Inversion symmetry broken 2D 3R-MoTe2. Advanced Functional Materials, 2018, 28(26):1800785. |
[29] | WANG F, ZHANG Z, ZHANG Y, et al. Honeycomb RhI3 flakes with high environmental stability for optoelectronics. Advanced Materials, 2020, 32(25):2001979. |
[30] |
WANG R, LIANG F, WANG F, et al. Sr6Cd2Sb6O7S10: strong SHG response activated by highly polarizable Sb/O/S groups. Angewandte Chemie International Edition, 2019, 58(24):8078-8081.
DOI URL |
[31] |
LI L, HAN W, PI L, et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat, 2019, 1(1):54-73.
DOI URL |
[32] | YU Y, RAN M, ZHOU S, et al. Phase-engineered synthesis of ultrathin hexagonal and monoclinic GaTe flakes and phase transition study. Advanced Functional Materials, 2019, 29(23):1901012. |
[33] |
DAI M, CHEN H, WANG F, et al. Robust piezo-phototronic effect in multilayer gamma-InSe for high-performance self-powered flexible photodetectors. ACS Nano, 2019, 13(6):7291-7299.
DOI URL |
[34] |
FANG Y, HU X, ZHAO W, et al. Structural determination and nonlinear optical properties of new 1T‴-type MoS2 compound. Journal of the American Chemical Society, 2019, 141(2):790-793.
DOI URL |
[35] | GONG C, CHU J, YIN C, et al. Self-confined growth of ultrathin 2D nonlayered wide-bandgap semiconductor CuBr flakes. Advanced Materials, 2019, 31(36):e1903580. |
[36] | FENG X, SUN Z, PEI K, et al. 2D inorganic bimolecular crystals with strong in-plane anisotropy for second-order nonlinear optics. Advanced Materials, 2020, 32(32):e2003146. |
[37] |
LI Y, RAO Y, MAK K F, et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Letters, 2013, 13(7):3329-3333.
DOI URL |
[38] |
CHEN S Y, GOLDSTEIN T, VENKATARAMAN D, et al. Activation of new raman modes by inversion symmetry breaking in type II weyl semimetal candidate T'-MoTe2. Nano Letters, 2016, 16(9):5852-5860.
DOI URL |
[39] | SONG Y, TIAN R, YANG J, et al. Second harmonic generation in atomically thin MoTe2. Advanced Optical Materials, 2018, 6(17):1701334. |
[40] | ZENG Z, SUN X, ZHANG D, et al. Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS2 and WSe2 atomic layers. Advanced Functional Materials, 2019, 29(11):1806874. |
[41] | ZHAO M, YE Z, SUZUKI R, et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light: Science & Applications, 2016, 5(8):e16131. |
[42] |
HSU W T, ZHAO Z A, LI L J, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano, 2014, 8(3):2951-2958.
DOI URL |
[43] |
YIN X, YE Z, CHENE D A, et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science, 2014, 344(6183):488-490.
DOI URL |
[44] |
CARVALHO B R, WANG Y, FUJISAWA K, et al. Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano Letters, 2020, 20(1):284-291.
DOI URL |
[45] |
CHENG J, JIANG T, JI Q, et al. Kinetic nature of grain boundary formation in as-grown MoS2 monolayers. Advanced Materials, 2015, 27(27):4069-4074.
DOI URL |
[46] |
LIANG J, ZHANG J, LI Z, et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Letters, 2017, 17(12):7539-7543.
DOI URL |
[47] |
MENNEL L, FURCHI M M, WACHTER S, et al. Optical imaging of strain in two-dimensional crystals. Nature Communications, 2018, 9(1):516.
DOI URL |
[48] |
LYUBCHANSKII I L, DADOENKOVA N N, LYUBCHANSKII M I, et al. Second-harmonic generation from realistic film-substrate interfaces: the effects of strain. Applied Physics Letters, 2000, 76(14):1848-1850.
DOI URL |
[49] | CUNHA R, CADORE A, RAMOS S,, et al. Second harmonic generation in defective hexagonal boron nitride. Journal of Physics: Condensed Matter, 2020, 32(19): 19LT01. |
[50] | MURRAY W, LUCKING M, KAHN E, et al. Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2D Materials, 2020, 7(4):045020. |
[51] | ROSA H G, JUNPENG L, GOMES L C, et al. Second-harmonic spectroscopy for defects engineering monitoring in transition metal dichalcogenides. Advanced Optical Materials, 2018, 6(5):1701327. |
[52] |
WU W, ZHANG Q, ZHOU X, et al. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy, 2018, 51:45-53.
DOI URL |
[53] |
JIMENEZ V O, KALAPPATTIL V, EGGERS T, et al. A magnetic sensor using a 2D van der Waals ferromagnetic material. Scientific Reports, 2020, 10(1):4789.
DOI URL |
[54] | NAFDAY D, SEN D, KAUSHAL N, et al. 2D ferromagnetism in layered inorganic-organic hybrid perovskites. Physical Review Research, 2019, 1(3):032034. |
[55] |
DENEV S A, LUMMEN T T A, BARNES E, et al. Probing ferroelectrics using optical second harmonic generation. Journal of the American Ceramic Society, 2011, 94(9):2699-2727.
DOI URL |
[56] |
XU X, CHEN S, LIU S, et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. Journal of The American Chemical Society, 2019, 141(5):2128-2134.
DOI URL |
[57] | LI J, ZHOU P, ZOU Z, et al. Topological phase transition in 2D 1T′-WSTe. Physica Status Solidi (b), 2020, 257(9):2000010. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||