无机材料学报 ›› 2021, Vol. 36 ›› Issue (10): 1059-1066.DOI: 10.15541/jim20210013 CSTR: 32189.14.10.15541/jim20210013
收稿日期:
2021-01-08
修回日期:
2021-02-01
出版日期:
2021-10-20
网络出版日期:
2021-03-15
通讯作者:
常程康, 教授. E-mail: ckchang@sit.edu.cn
作者简介:
樊文琪(1992-), 男, 硕士研究生. E-mail: 1900706242@qq.om
基金资助:
FAN Wenqi1(), SONG Xuemei2, HUANG Yiling2, CHANG Chengkang1(
)
Received:
2021-01-08
Revised:
2021-02-01
Published:
2021-10-20
Online:
2021-03-15
Contact:
CHANG Chengkang, professor. E-mail: ckchang@sit.edu.cn
About author:
FAN Wenqi(1992-), male, Master candidate. E-mail: 1900706242@qq.om
Supported by:
摘要:
为了研究高温环境中钙镁铝硅酸盐(CMAS)对氧化钇部分稳定氧化锆(YSZ)涂层的影响, 采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、能量色散X射线光谱仪(EDS)和电子背散射衍射(EBSD)等手段对涂层腐蚀前后的微观结构和相变进行了分析测试。研究结果表明: 高温环境中CMAS腐蚀YSZ涂层从顶部到底部呈现层裂、致密、较致密以及层状结构的特征。在YSZ涂层的顶部发生了熔融/再结晶现象, 导致涂层的t-ZrO2相转变为m-ZrO2相, 从顶部至底部相变程度依次减弱。研究还发现, 由于熔融的CMAS更易沿着涂层的晶界进行渗透和侵蚀, CMAS诱导相变主要发生在晶界处。
中图分类号:
樊文琪, 宋雪梅, 黄怡玲, 常程康. CMAS对YSZ涂层腐蚀引起的结构变化及其相变分布[J]. 无机材料学报, 2021, 36(10): 1059-1066.
FAN Wenqi, SONG Xuemei, HUANG Yiling, CHANG Chengkang. Structure Change and Phase Transition Distribution of YSZ Coating Caused by CMAS Corrosion[J]. Journal of Inorganic Materials, 2021, 36(10): 1059-1066.
XRF | CaO | MgO | AlO1.5 | SiO2 |
---|---|---|---|---|
CMAS | 23 | 14.02 | 13.1 | 49.8 |
表1 Ca22Mg19Al14Si45粉体的XRF化学元素组成
Table 1 XRF chemical element molar percent composition of Ca22Mg19Al14Si45 powder/%
XRF | CaO | MgO | AlO1.5 | SiO2 |
---|---|---|---|---|
CMAS | 23 | 14.02 | 13.1 | 49.8 |
图1 CMAS粉末的(a)X射线衍射图谱、(b)粒度分布和(c)TG-DSC曲线
Fig. 1 (a) XRD pattern, (b) particle size distribution and (c) differential scanning calorimetry (TG-DSC) graph of CMAS powder
图2 喷涂态YSZ涂层的(a)自然断面的二次电子形貌、(b)抛光横截面的背散射形貌、和(c) (b)图中红色框区域的放大背散射图像
Fig. 2 (a) Secondary electron morphology of the natural section, (b) backscattered morphology of the polished cross section, and (c) enlarged backscattered image of red frame area in (b) of the sprayed YSZ coating
图4 (a)CMAS腐蚀YSZ涂层4 h后的截面背散射照片; (b~e)图(a)方区域(1~4)的EDS元素分布图
Fig. 4 (a) Cross-sectional backscatter SEM image of YSZ coating after 4 h corrosion by high-temperature CMAS; (b-e) EDS element mappings of frame (1-4), respectively
图5 高温CMAS腐蚀态YSZ涂层断面的A、B、C、D四种不同深度区域的二次电子照片
Fig. 5 Secondary electron images of cross-sections of the four different depth regions A, B, C, and D in the high-temperature CMAS corroded YSZ coating
图6 (a)高温CMAS腐蚀态YSZ涂层截面局部背散射形貌, (b)方框1(图(a)中)的放大图像, (c)黄色虚线框区域(图(b)中)二次电子放大图像, (d)方框2区域(图(a)中)放大图像, (e)高温CMAS腐蚀态YSZ涂层截面中部的背散射形貌, (f)高温CMAS腐蚀态YSZ涂层截面底部的背散射形貌
Fig. 6 (a) Local backscattering morphology of cross-section of the YSZ coating in the high temperature CMAS corroded state, (b) enlarged image of the red box 1 in (a), and (c) secondary electron magnified image of yellow dashed box area in (b), (d) magnified image of the red box 2 area in (a), (e) backscattering morphology of middle part of the high-temperature CMAS corroded YSZ coating, and (f) backscattering morphology of bottom of cross-section of the high temperature CMAS corroded YSZ coating
EDS/wt% | Ca | Mg | Al | Si | O | Y | Zr |
---|---|---|---|---|---|---|---|
1 | 11.92 | 7.64 | 5.96 | 23.31 | 43.81 | 5.05 | 2.31 |
2 | 11.01 | 7.08 | 5.60 | 23.43 | 44.43 | 5.70 | 2.76 |
3 | 10.93 | 7.96 | 6.12 | 23.51 | 44.03 | 5.18 | 2.26 |
4 | 11.29 | 7.15 | 5.73 | 23.13 | 43.47 | 5.19 | 5.02 |
5 | 11.27 | 7.04 | 5.64 | 22.74 | 43.19 | 5.09 | 5.02 |
6 | 0.65 | 0.41 | 0 | 0 | 25.84 | 4.01 | 69.09 |
7 | 2.19 | 1.34 | 0.95 | 3.74 | 28.71 | 3.46 | 59.61 |
8 | 2.59 | 1.92 | 1.30 | 4.92 | 29.66 | 3.70 | 55.92 |
表2 图6(b,c)中点1~8的EDS能谱分析结果
Table 2 EDS analyses of points 1-8 in Fig. 6(b, c)
EDS/wt% | Ca | Mg | Al | Si | O | Y | Zr |
---|---|---|---|---|---|---|---|
1 | 11.92 | 7.64 | 5.96 | 23.31 | 43.81 | 5.05 | 2.31 |
2 | 11.01 | 7.08 | 5.60 | 23.43 | 44.43 | 5.70 | 2.76 |
3 | 10.93 | 7.96 | 6.12 | 23.51 | 44.03 | 5.18 | 2.26 |
4 | 11.29 | 7.15 | 5.73 | 23.13 | 43.47 | 5.19 | 5.02 |
5 | 11.27 | 7.04 | 5.64 | 22.74 | 43.19 | 5.09 | 5.02 |
6 | 0.65 | 0.41 | 0 | 0 | 25.84 | 4.01 | 69.09 |
7 | 2.19 | 1.34 | 0.95 | 3.74 | 28.71 | 3.46 | 59.61 |
8 | 2.59 | 1.92 | 1.30 | 4.92 | 29.66 | 3.70 | 55.92 |
图7 高温CMAS腐蚀态YSZ涂层的砂状晶粒的(a)二次电子照片及(b)其对应的EBSD相图
Fig. 7 (a) Secondary electron photograph and (b) corresponding EBSD phase diagram of sand-like grains of YSZ coating in high temperature CMAS corroded state Green: t-ZrO2; Red: m-ZrO2; White: CMAS Colourful images are available on website
图8 高温CMAS腐蚀态YSZ涂层B、C、D区域的EBSD相分析图(a,c,e)和欧拉角图(b,d,f)
Fig. 8 EBSD phase distribution diagrams (a,c,e) and Euler angle diagrams (b,d,f) of the B, C, and D regions of the high-temperature CMAS corroded YSZ coating, respectively Images in (a,c,e), Green: t-ZrO2, Red: m-ZrO2, White: pore in the YSZ coating. Different colors in (b,d,f) represent different grain orientations. Colourful images are available on website
[1] |
MEHBOOB G, LIU M J, XU T, et al. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceramics International, 2020, 46(7):8497-8521.
DOI URL |
[2] | SHI M, XUE Z, ZHANG Z, et al. Effect of spraying powder characteristics on mechanical and thermal shock properties of plasma-sprayed YSZ thermal barrier coating. Surface and Coatings Technology, 2020, 395:125913. |
[3] |
WEN M, JORDAN E H, GELL M. Effect of temperature on rumpling and thermally grown oxide stress in an EB-PVD thermal barrier coating. Surface and Coatings Technology, 2006, 201(6):3289-3298.
DOI URL |
[4] | HU W, LEI Y, ZHANG J, et al. Mechanical and thermal properties of RE4Hf3O12(RE= Ho, Er, Tm) ceramics with defect fluorite structure. Journal of Materials Science & Technology, 2019, 35(9):2064-2069. |
[5] |
ZHANG X C, XU B S, WANG H D, et al. Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/NiCoCrAlY coatings using finite element method. Materials & Design, 2006, 27(4):308-315.
DOI URL |
[6] | ZHANG G, FAN X, XU R, et al. Transient thermal stress due to the penetration of calcium-magnesium-alumino-silicate in EB-PVD thermal barrier coating system. Ceramics International, 2018, 44(11):12655-12663. |
[7] | WELLMAN R, NICHOLLS J R. A mechanism for the erosion of EB PVD TBCs. Materials Science Forum, 2001, 369:531-538. |
[8] |
CHEN X, WANG R, YAO N, et al. Foreign object damage in a thermal barrier system: mechanisms and simulations. Materials Science and Engineering: A, 2003, 352(1/2):221-231.
DOI URL |
[9] |
CHEN X, HE M Y, SPITSBERG I, et al. Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear, 2004, 256(7/8):735-746.
DOI URL |
[10] |
EVANS A G, FLECK N A, FAULHABER S, et al. Scaling laws governing the erosion and impact resistance of thermal barrier coatings. Wear, 2006, 260(8):886-894.
DOI URL |
[11] |
ZHENG H, CHEN Z, LI G, et al. High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium- aluminosilicate (CMAS) deposits: first-principles calculations. Corrosion Science, 2017, 126:286-294.
DOI URL |
[12] |
PUJOL G, ANSART F, BONINO J P, et al. Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications. Surface and Coatings Technology, 2013, 237:71-78.
DOI URL |
[13] |
WU J, GUO H, GAO Y, et al. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. Journal of the European Ceramic Society, 2011, 31(10):1881-1888.
DOI URL |
[14] |
ZHANG B, SONG W, GUO H. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor. Journal of the European Ceramic Society, 2018, 38(10):3564-3572.
DOI URL |
[15] |
KRÄMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3- SiO2(CMAS) deposits. Journal of the American Ceramic Society, 2006, 89(10):3167-3175.
DOI URL |
[16] |
MERCER C, FAULHABER S, EVANS A G, et al. delamination mechanism for thermal barrier coatings subject to calcium- magnesium-alumino-silicate (CMAS) infiltration. Acta materialia, 2005, 53(4):1029-1039.
DOI URL |
[17] |
CHEN X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings. Surface and Coatings Technology, 2006, 200(11):3418-3427.
DOI URL |
[18] |
KRÄMER S, FAULHABER S, CHAMBERS M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino- silicate (CMAS) penetration. Materials Science and Engineering: A, 2008, 490(1/2):26-35.
DOI URL |
[19] | MOHAN P, YUAN B, PATTERSON T, et al. Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO-MgO-Al2O3-SiO2) deposits. Materials Science Forum, 2008, 595:207-212. |
[20] | KISI E H, HOWARD C J. Crystal structures of zirconia phases and their inter-relation. Key Engineering Materials, 1998, 153:1-36. |
[21] |
PENG H, WANG L, GUO L, et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress in Natural Science: Materials International, 2012, 22(5):461-467.
DOI URL |
[22] |
KRAUSE A R, SENTURK B S, GARCES H F, et al. 2ZrO2·Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: part I, optical basicity considerations and processing. Journal of the American Ceramic Society, 2014, 97(12):3943-3949.
DOI URL |
[23] |
AYGUN A, VASILIEV A L, PADTURE N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Materialia, 2007, 55(20):6734-6745.
DOI URL |
[24] |
LEVI C G, HUTCHINSON J W, VIDAL-SÉTIF M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull., 2012, 37(10):932-941.
DOI URL |
[25] |
LIPKIN D M, KROGSTAD J A, GAO Y, et al. Phase evolution upon aging of air-plasma sprayed t′-zirconia coatings: I—synchrotron X-ray diffraction. Journal of the American Ceramic Society, 2013, 96(1):290-298.
DOI URL |
[26] |
WEBSTER R I, OPILA E J. Mixed phase ytterbium silicate environmental-barriercoating materials for improved calcium- magnesium-alumino-silicate resistance. Journal of Materials Research, 2020, 35(17):2358-2372.
DOI URL |
[27] |
MACK D E, LAQUAI R, MÜLLER B, et al. Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing. Journal of the American Ceramic Society, 2019, 102(10):6163-6175.
DOI URL |
[28] |
KRAUSE A R, GARCES H F, DWIVEDI G, et al. Calcia- magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Materialia, 2016, 105:355-366.
DOI URL |
[29] |
HUANG Y L, SHEN Y L, ZENG Y, et al. EBSD analysis of microstructure changes in YSZ coatings during thermal cycling. Ceramics International, 2021, 47(4):5559-5569.
DOI URL |
[30] |
ZHU W, LI Z Y, YANG L, et al. Real-time detection of cmas corrosion failure in APS thermal barrier coatings under thermal shock. Experimental Mechanics, 2020, 60(6):775-785.
DOI URL |
[1] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[2] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[3] | 李捷, 罗志新, 崔阳, 张广珩, 孙鲁超, 王京阳. 大气等离子喷涂Y3Al5O12/Al2O3陶瓷涂层的CMAS腐蚀抗力[J]. 无机材料学报, 2024, 39(6): 671-680. |
[4] | 何宗倍, 陈放, 刘佃光, 李统业, 曾强. 模拟核芯FCM燃料的振荡烧结行为研究[J]. 无机材料学报, 2024, 39(5): 501-508. |
[5] | 范栋, 钟鑫, 王亚文, 张振忠, 牛亚然, 李其连, 张乐, 郑学斌. 富铝CMAS对稀土硅酸盐环境障涂层的腐蚀行为与机制研究[J]. 无机材料学报, 2023, 38(5): 544-552. |
[6] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[7] | 潘洋洋, 梁波, 洪督, 祁志祥, 牛亚然, 郑学斌. TiAl合金表面TiAlCrY/YSZ涂层高温长时间服役性能[J]. 无机材料学报, 2023, 38(1): 105-112. |
[8] | 王士维. 基于疏水作用的陶瓷浆料自发凝固成型研究进展[J]. 无机材料学报, 2022, 37(8): 809-820. |
[9] | 刘强, 王倩, 陈鹏辉, 李晓英, 章立轩, 谢腾飞, 李江. 两步烧结法制备红色Ce:8YSZ透明陶瓷及其性能研究[J]. 无机材料学报, 2022, 37(8): 911-917. |
[10] | 杨勇, 郭啸天, 唐杰, 常浩天, 黄政仁, 胡秀兰. 非氧化物陶瓷光固化增材制造研究进展及展望[J]. 无机材料学报, 2022, 37(3): 267-277. |
[11] | 李榅凯, 赵宁, 毕志杰, 郭向欣. 钠离子电池Na3Zr2Si2PO12陶瓷电解质的喷雾干燥法制备及性能优化[J]. 无机材料学报, 2022, 37(2): 189-196. |
[12] | 李汪国, 刘佃光, 王珂玮, 马百胜, 刘金铃. 闪烧合成高熵氧化物陶瓷(MgCoNiCuZn)O的性能[J]. 无机材料学报, 2022, 37(12): 1289-1294. |
[13] | 吴永豪, 李向锋, 朱向东, 张兴栋. 高强度羟基磷灰石纳米陶瓷的构建及其促成骨细胞活性研究[J]. 无机材料学报, 2021, 36(5): 552-560. |
[14] | 喻瑛, 杜红亮, 杨泽田, 靳立, 屈绍波. 无铅块体陶瓷的电卡效应: 现状与挑战[J]. 无机材料学报, 2020, 35(6): 633-646. |
[15] | 冀晓鹃,于月光,卢晓亮. 杂质对氧化锆热障涂层性能的影响[J]. 无机材料学报, 2020, 35(6): 669-674. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||