| [1] |
ROWE D M, CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995.
|
| [2] |
HE J, KANATZIDIS M G, DRAVID V P. High performance bulk thermoelectrics via a panoscopic approach. Materials Today, 2013, 16(5):166-176.
DOI
URL
|
| [3] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008, 7:105-114.
DOI
URL
|
| [4] |
ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496):373-377.
DOI
URL
|
| [5] |
SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemical Society, 2011, 133(20):7837-7846.
DOI
URL
|
| [6] |
ZHAO W, LIU Z, SUN Z, et al. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671):247-251.
DOI
URL
|
| [7] |
LIU R, CHEN H, ZHAO K, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 2017, 29(38):1702712.
DOI
URL
|
| [8] |
HU L, ZHANG Y, WU H, et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Advanced Energy Materials, 2018, 8(29):1802116.
DOI
URL
|
| [9] |
QIU Y, JIN Y, WANG D, et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. Journal of Materials Chemistry A, 2019, 7(46):26393-26401.
DOI
URL
|
| [10] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, 6(5):299-303.
DOI
URL
|
| [11] |
SENKOV O N, MILLER J D, MIRACLE D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 2015, 6:1-10.
|
| [12] |
ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61:1-93.
DOI
URL
|
| [13] |
PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345):66-69.
DOI
URL
|
| [14] |
PEI Y, LALONDE A, IWANAGA S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011, 4(6):2085-2089.
|
| [15] |
HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888):554-557.
DOI
URL
|
| [16] |
GUIN S N, CHATTERJEE A, NEGI D S, et al. High thermoelectric performance in tellurium free p-type AgSbSe2. Energy & Environmental Science, 2013, 6(9):2603-2608.
|
| [17] |
PAN L, BÉRARDAN D, DRAGOE N. High thermoelectric properties of n-type AgBiSe2. Journal of the American Chemical Society, 2013, 135(13):4914-4917.
DOI
URL
|
| [18] |
PARKER D S, MAY A F, SINGH D J. Benefits of carrier-pocket anisotropy to thermoelectric performance: the case of p-type AgBiSe2. Physical Review Applied, 2015, 3(6):064003.
DOI
URL
|
| [19] |
GUIN S N, BISWAS K. Cation disorder and bond anharmonicity optimize the thermoelectric properties in kinetically stabilized rocksalt AgBiS2 nanocrystals. Chemistry of Materials, 2013, 25(15):3225-3231.
DOI
URL
|
| [20] |
CHAMBERLAIN A L, FAHRENHOLTZ W G, HILMAS G E. Pressureless sintering of zirconium diboride. Journal of the American Ceramic Society, 2006, 89(2):450-456.
DOI
URL
|
| [21] |
PEI Y L, WU H, SUI J, et al. High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy & Environmental Science, 2013, 6(6):1750-1755.
|
| [22] |
SU X, FU F, YAN Y, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nature Communication, 2014, 5(1):4908-4914.
DOI
URL
|
| [23] |
HU T, YANG D, SU X, et al. Interpreting the combustion process for high-performance ZrNiSn thermoelectric materials. ACS Applied Materials & Interfaces, 2017, 10:864-872.
|
| [24] |
YANG D, SU X, YAN Y, et al. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1-xPbxCuSeO. Chemistry of Materials, 2016, 28:4628-4640.
DOI
URL
|
| [25] |
YANG D, SU X, MENG F, et al. Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. Journal of Materials Chemistry A, 2017, 5:23243-23251.
DOI
URL
|
| [26] |
MERZHANOV A G. SHS processes: combustion theory and practice. Arch. Combustionis, 1981, 1:4.
|
| [27] |
XIAO C, QIN X, ZHANG J, et al. High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. Journal of the American Chemical Society, 2012, 134(44):18460-18466.
DOI
URL
|