无机材料学报 ›› 2021, Vol. 36 ›› Issue (9): 950-958.DOI: 10.15541/jim20200675 CSTR: 32189.14.10.15541/jim20200675
收稿日期:
2020-11-26
修回日期:
2020-12-31
出版日期:
2021-09-20
网络出版日期:
2021-01-25
通讯作者:
闫 爽, 讲师. E-mail: yanye150@outlook.com
作者简介:
储宇星(1994-), 男, 硕士研究生. E-mail: 434611816@qq.com
基金资助:
CHU Yuxing1(), LIU Hairui1,2, YAN Shuang1(
)
Received:
2020-11-26
Revised:
2020-12-31
Published:
2021-09-20
Online:
2021-01-25
Contact:
YAN Shuang, lecturer. E-mail: yanye150@outlook.com
About author:
CHU Yuxing(1994-), male, Master candidate. E-mail: 434611816@qq.com
Supported by:
摘要:
采用静电纺丝技术结合化学沉淀法和高温煅烧处理, 制备了具有不同Sn含量的SnO2/NiO复合半导体纳米纤维。采用扫描电子显微镜(SEM), X射线衍射仪(XRD)和能量色散X射线光谱仪(EDS)对样品的形貌, 结构以及各元素含量进行表征。以乙醇为目标气体, 探究SnO2/NiO纳米纤维的气体传感性质, 以及Sn含量对复合纳米纤维气敏性能的影响。研究结果表明, SnO2/NiO复合纳米纤维具有三维网状结构, SnO2复合对NiO纳米纤维的气敏性能具有明显的增强作用。随着SnO2含量的增加, 复合纤维对乙醇气体的响应灵敏度增强, 其中响应最高的复合纳米纤维在最佳工作温度160 ℃条件下对体积分数为100×10-6乙醇气体的响应灵敏度为13.4, 是NiO纳米纤维最大响应灵敏度的8.38倍。与市面常见的乙醇气体传感器MQ-3相比, SnO2/NiO复合纳米纤维的最佳工作温度更低, 响应灵敏度更高, 具有一定的实际应用价值。
中图分类号:
储宇星, 刘海瑞, 闫爽. SnO2/NiO复合半导体纳米纤维的制备及气敏性能研究[J]. 无机材料学报, 2021, 36(9): 950-958.
CHU Yuxing, LIU Hairui, YAN Shuang. Preparation and Gas Sensing Properties of SnO2/NiO Composite Semiconductor Nanofibers[J]. Journal of Inorganic Materials, 2021, 36(9): 950-958.
图3 (a, b)SnO2/NiO-1 NFs、(c, d)SnO2/NiO-2 NFs、(e, f)SnO2/NiO-3 NFs和(g, h) SnO2/NiO-4 NFs的SEM照片
Fig. 3 SEM images of (a, b) SnO2/NiO-1 NFs, (c, d) SnO2/NiO-2 NFs, (e, f) SnO2/NiO-3 NFs, and (g, h) SnO2/NiO-4 NFs
Sample | Ni/% | Sn/% |
---|---|---|
NiO NFs | 100 | 0 |
SnO2/NiO-1 NFs | 76.79 | 23.21 |
SnO2/NiO-2 NFs | 25.46 | 74.54 |
SnO2/NiO-3 NFs | 0.51 | 99.49 |
SnO2/NiO-4 NFs | 0.08 | 99.92 |
表1 NiO NFs和SnO2/NiO NFs样品中Ni和Sn元素的相对摩尔百分含量
Table 1 Relative molar percentages of Ni and Sn in NiO NFs and SnO2/NiO NFs samples
Sample | Ni/% | Sn/% |
---|---|---|
NiO NFs | 100 | 0 |
SnO2/NiO-1 NFs | 76.79 | 23.21 |
SnO2/NiO-2 NFs | 25.46 | 74.54 |
SnO2/NiO-3 NFs | 0.51 | 99.49 |
SnO2/NiO-4 NFs | 0.08 | 99.92 |
图4 SnO2/NiO-1 NFs、SnO2/NiO-2 NFs、SnO2/NiO-3 NFs和SnO2/NiO-4 NFs的XRD图谱
Fig. 4 XRD patterns of SnO2/NiO-1 NFs, SnO2/NiO-2 NFs,SnO2/NiO-3 NFs, and SnO2/NiO-4 NFs
Sample | Grain size, D/nm | Grain boundary density, $\delta $/(×109, mm-2) |
---|---|---|
SnO2/NiO-1 NFs | 11.1 | 8.12 |
SnO2/NiO-2 NFs | 7.4 | 18.46 |
SnO2/NiO-3 NFs | 6.3 | 25.16 |
SnO2/NiO-4 NFs | 6.3 | 25.16 |
表2 SnO2/NiO NFs样品的晶粒尺寸(D)和晶界密度(δ)
Table 2 Respective grain size (D) and grainboundary density (δ) of SnO2/NiO NFs samples
Sample | Grain size, D/nm | Grain boundary density, $\delta $/(×109, mm-2) |
---|---|---|
SnO2/NiO-1 NFs | 11.1 | 8.12 |
SnO2/NiO-2 NFs | 7.4 | 18.46 |
SnO2/NiO-3 NFs | 6.3 | 25.16 |
SnO2/NiO-4 NFs | 6.3 | 25.16 |
图5 NiO NFs、SnO2/NiO-1 NFs、SnO2/NiO-2 NFs、 SnO2/NiO-3 NFs和SnO2/NiO-4 NFs在不同温度下对乙醇气体的灵敏度曲线(a), 在最佳工作温度下对体积分数为100×10-6乙醇气体的响应恢复曲线(b)
Fig. 5 (a) Sensitivity curves of NiO NFs, SnO2/NiO-1 NFs, SnO2/NiO-2 NFs, SnO2/NiO-3 NFs, and SnO2/NiO-4 NFs to ethanol gas at different temperatures, and (b) response recovery curve to 100×10-6 ethanol gas (volume fraction) at the optimal working temperature
图6 SnO2/NiO-1 NFs、SnO2/NiO-2 NFs、SnO2/NiO-3 NFs和SnO2/NiO-4 NFs对各种目标气体的选择性(100 mg/L)
Fig. 6 Selectivity of SnO2/NiO-1 NFs, SnO2/NiO-2 NFs, SnO2/NiO-3 NFs, and SnO2/NiO-4 NFs to various target gases(100 mg/L)
图7 SnO2/NiO-3 NFs和MQ-3在不同工作温度下对体积分数为100×10-6乙醇气体的灵敏度曲线(a), 最佳工作温度下对体积分数为100×10-6乙醇气体的响应恢复曲线(b)
Fig. 7 (a) Sensitivity curves of SnO2/NiO-3 NFs and MQ-3 to 100×10-6 ethanol gas at different working temperatures, and (b) response recovery curve to 100×10-6 ethanol gas at the optimal working temperature
Materials | Temperature/ ℃ | Response/(100 mg·L-1) | Ref. |
---|---|---|---|
Hierarchical SnO2 | 300 | 24.1 | [ |
ZnO-SnO2 nanofibers | 300 | 18.0 | [ |
Horseshoe-shaped SnO2 | 225 | 17.3 | [ |
NiO-decorated SnO2nanorods | 300 | 30.0 | [ |
SnO2/NiO composite nanofibers | 160 | 13.0 | This work |
表3 文献报道的部分SnO2基乙醇传感器特性与本工作的比较
Table 3 Comparison of the characteristics of some SnO2-based ethanol sensors reported in the literature with this work
Materials | Temperature/ ℃ | Response/(100 mg·L-1) | Ref. |
---|---|---|---|
Hierarchical SnO2 | 300 | 24.1 | [ |
ZnO-SnO2 nanofibers | 300 | 18.0 | [ |
Horseshoe-shaped SnO2 | 225 | 17.3 | [ |
NiO-decorated SnO2nanorods | 300 | 30.0 | [ |
SnO2/NiO composite nanofibers | 160 | 13.0 | This work |
[1] | YAMAZOE NOBORU, SHIMANOE KENGO. Receptor function and response of semiconductor gas sensor. Journal of Sensors, 2009, 2009:875704. |
[2] |
BARSAN N, KOZIEJ D, WEIMAR U. Metal oxide-based gas sensor research: How to? Sensors and Actuators B: Chemical, 2007, 121(1):18-35.
DOI URL |
[3] |
MORAN-LAZARO J P, GUILLEN-LOPEZ E S, LOPEZ-URIAS F, et al. Synthesis of ZnMn2O4 nanoparticles by a microwave-assisted colloidal method and their evaluation as a gas sensor of propane and carbon monoxide. Sensors, 2018, 18(3):701.
DOI URL |
[4] |
LEE JEONGSEOK, LEE SE-HYEONG, BAK SO-YOUNG, et al. Improved sensitivity of α-Fe2O3 nanoparticle-decorated ZnO nanowire gas sensor for CO. Sensors, 2019, 19(8):1903.
DOI URL |
[5] |
WANG XU, LI SIHAN, XIE LILI, et al. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceramics International, 2020, 46(10):15858-15866.
DOI URL |
[6] |
LEONARDI S G, MIRZAEI A, BONAVITA A, et al. A comparison of the ethanol sensing properties of alpha-iron oxide nanostructures prepared via the Sol-Gel and electrospinning techniques. Nanotechnology, 2016, 27(7):075502.
DOI URL |
[7] |
MIRZAEI ALI, PARK SUNGHOON, SUN GUN-JOO, et al. Fe2O3/Co3O4 composite nanoparticle ethanol sensor. Journal of the Korean Physical Society, 2016, 69(3):373-380.
DOI URL |
[8] |
CHOI SEUNGBOK, BONYANI MARYAM, SUN GUN-JOO, et al. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors. Applied Surface Science, 2018, 432:241-249.
DOI URL |
[9] |
ZHOU XINYUAN, WANG YING, WANG JINXIAO, et al. Amplifying the signal of metal oxide gas sensors for low concentration gas detection. IEEE Sensors Journal, 2017, 17(9):2841-2847.
DOI URL |
[10] |
HU WEIYE. Vehicle alcohol detection system based on Internet of things technology. IOP Conference Series: Materials Science and Engineering, 2018, 452:042156.
DOI URL |
[11] |
WEI BEE-YU, HSU MING-CHIH, SU PI-GUEY, et al. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B: Chemical, 2004, 101(1/2):81-89.
DOI URL |
[12] |
SHARMA HEMLATA JAYPRAKSH, SONWANE NAYANA DAMODHAR, KONDAWAR SUBHASH BABURAO. Electrospun SnO2/polyaniline composite nanofibers based low temperature hydrogen gas sensor. Fibers and Polymers, 2015, 16(7):1527-1532.
DOI URL |
[13] |
CHO SOO-YEON, YOO HAE-WOOK, KIM JU YE, et al. High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Letters, 2016, 16(7):4508-4515.
DOI URL |
[14] |
MOON YOUNG KOOK, JEONG SEONG-YONG, KANG YUN CHAN, et al. Metal oxide gas sensors with Au nanocluster catalytic overlayer: Toward tuning gas selectivity and response using a novel bilayer sensor design. ACS Applied Materials Interfaces, 2019, 11(35):32169-32177.
DOI URL |
[15] |
AMIRI VAHID, ROSHAN HOSSEIN, MIRZAEI ALI, et al. Nanostructured metal oxide-based acetone gas sensors: a review. Sensors, 2020, 20(11):3096.
DOI URL |
[16] |
NUNDY SRIJITA, EOM TAE-YIL, KANG JUN-GU, et al. Flower-shaped ZnO nanomaterials for low-temperature operations in NOX gas sensors. Ceramics International, 2020, 46(5):5706-5714.
DOI URL |
[17] |
SHAALAN N M, YAMAZAKI T, KIKUTA T, et al. Influence of morphology and structure geometry on NO2 gas-sensing characteristics of SnO2 nanostructures synthesized via a thermal evaporation method. Sensors and Actuators B: Chemical, 2011, 153(1):11-16.
DOI URL |
[18] | GAIDAN IBRAHIM, ASBIA SALIM, BRABAZON DERMOT, et al. TiO2 gas sensor to detect the propanol at room temperature. AIP Conference Proceedings, 2017, 1896(1):1-5. |
[19] |
YAN SHUANG, WU QINGSHENG. A novel structure for enhancing the sensitivity of gas sensors -α-Fe2O3 nanoropes containing a large amount of grain boundaries and their excellent ethanol sensing performance. Journal of Materials Chemistry A, 2015, 3(11):5982-5990.
DOI URL |
[20] |
ZHANG JIAN, ZENG DAWEN, ZHU QIANG, et al. Effect of grain-boundaries in NiO nanosheet layers room-temperature sensing mechanism under NO2. Journal of Physical Chemistry C, 2015, 119(31):17930-17939.
DOI URL |
[21] |
TURGUT ERDAL, COBAN OMER, SARITAS SEVDA, et al. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Applied Surface Science, 2018, 435:880-885.
DOI URL |
[22] |
ZENG QINGHAO, CUI YANFA, ZHU LIANFENG, et al. Increasing oxygen vacancies at room temperature in SnO2 for enhancing ethanol gas sensing. Materials Science in Semiconductor Processing, 2020, 111:104962.
DOI URL |
[23] |
LI XIN, ZHANG HANG, FENG CHANGHAO, et al. Novel cage-like α-Fe2O3/SnO2 composite nanofibers by electrospinning for rapid gas sensing properties. RSC Advanced., 2014, 4(52):27552-27555.
DOI URL |
[24] |
JAYABABU NAGABANDI, POLOJU MADHUKAR, SHRUTHI JULAKANTI, et al. Semi shield driven p-n heterostructures and their role in enhancing the room temperature ethanol gas sensing performance of NiO/SnO2 nanocomposites. Ceramics International, 2019, 45(12):15134-15142.
DOI URL |
[25] |
WEI ZHIJIE, ZHOU QU, WANG JINGXUAN, et al. Hydrothermal synthesis of SnO2 nanoneedle-anchored NiO microsphere and its gas sensing performances. Nanomaterials, 2019, 9(7):1015.
DOI URL |
[26] |
GUO JING, ZHANG JUN, ZHU MIN, et al. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors and Actuators B: Chemical, 2014, 199:339-345.
DOI URL |
[27] |
LONG JING, XIONG WEI, WEI CHENGYIRAN, et al. Directional assembly of ZnO nanowires via three-dimensional laser direct writing. Nano Letters, 2020, 20(7):5159-5166.
DOI URL |
[28] |
LIU BILU, LIU QINGFENG, REN WENCAI, et al. Synthesis of single-walled carbon nanotubes, their ropes and books. Comptes Rendus Physique, 2010, 11(5/6):349-354.
DOI URL |
[29] |
SCHOTTLE MARIUS, XIA QINGBO, CHENG YEN THENG, et al. Integrated polyphenol-based hydrogel templating method for functional and structured oxidic nanomaterials. Chemistry of Materials, 2020, 32(11):4716-4723.
DOI URL |
[30] |
LIU ZICHEN, MURPHY ALEXANDER WILLIAM ALLEN, KUPPE CHRISTIAN, et al. WS2 nanotubes, 2D nanomeshes, and 2D in-plane films through one single chemical vapor deposition route. ACS Nano, 2019, 13(4):3896-3909.
DOI URL |
[31] |
BAI SHOULI, GUO WENTAO, SUN JIANHUA, et al. Synthesis of SnO2-CuO heterojunction using electrospinning and application in detecting of CO. Sensors and Actuators B: Chemical, 2016, 226:96-103.
DOI URL |
[32] |
YAN SHUANG, WU QINGSHENG. Micropored Sn-SnO2/carbon heterostructure nanofibers and their highly sensitive and selective C2H5OH gas sensing performance. Sensors and Actuators B: Chemical, 2014, 205:329-337.
DOI URL |
[33] | DONG SHUWEN, WU DI, GAO WENYUAN, et al. Multi- dimensional templated synthesis of hierarchical Fe2O3/NiO composites and their superior ethanol sensing properties promoted by nanoscale p-n heterojunctions. Dalton Transitions, 2020, 49(4):1300-1310. |
[34] |
RHEINGANS BASTIAN, MITTEMEIJER ERIC J. Modelling precipitation kinetics: evaluation of the thermodynamics of nucleation and growth. Calphad, 2015, 50:49-58.
DOI URL |
[35] |
LI LU, BAO ZHILONG, YE XUNHENG, et al. Nucleation, growth, and aggregation of Au nanocrystals on liquid surfaces. Chinese Physics Letters, 2020, 37(2):028102.
DOI URL |
[36] |
WANG XIAOMING, PHILLIPS BRIAN L, BOILY JEAN-FRANCOIS, et al. Phosphate sorption speciation and precipitation mechanisms on amorphous aluminum hydroxide. Soil Systems, 2019, 3(1):20.
DOI URL |
[37] |
AYED RIHAB BEN, AJILI MEJDA, GARCIA JORGE M, et al. Physical properties investigation and gas sensing mechanism of Al: Fe2O3 thin films deposited by spray pyrolysis. Superlattices and Microstructures, 2019, 129:91-104.
DOI URL |
[38] |
MIRZAEI ALI, LEE JAE-HYOUNG, MAJHI SANJIT MANOHAR, et al. Resistive gas sensors based on metal-oxide nanowires. Journal of Applied Physics, 2019, 126(24):241102.
DOI URL |
[39] | GUMBI SIFISO W, MKWAE PRINCE S, KORTIDIS IOANNIS, et al. Electronic and simple oscillatory conduction in ferrite gas sensors: gas-sensing mechanisms, long-term gas monitoring, heat transfer, and other anomalies. ACS Applied Materiale Interfaces, 2020, 12(38):43231-43249. |
[40] |
ZHOU XIAOMING, FU WUYOU, YANG HAIBIN, et al. Novel SnO2 hierarchical nanostructures: synthesis and their gas sensing properties. Materials Letters, 2013, 90(1):53-55.
DOI URL |
[41] | SONG XIAOFENG, LIU LI. Characterization of electrospun ZnO-SnO2 nanofibers for ethanol sensor. Sensors & Actuators A Physical, 2009, 154(1):175-179. |
[42] | LU GEYU, ZHANG BO, SUN YANGFENG, et al. Horseshoe-shaped SnO2 with annulus-like mesoporous forethanol gas sensing application. Sensors & Actuators B Chemical, 2017, 240:1321-1329. |
[43] |
SUN GUN-JOO, LEE JAE KYUNG, LEE WAN IN, et al. Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors. Electronic Materials Letters, 2017, 13(3):260-269.
DOI URL |
[44] |
DEY ANANYA. Semiconductor metal oxide gas sensors: a review. Materials Science and Engineering: B, 2018, 229:206-217.
DOI URL |
[45] |
BARSAN NICOLAE, WEIMAR UDO. Conduction model of metal oxide gas sensors. Journal of Electroceramics, 2001, 7(3):143-167.
DOI URL |
[46] |
GAO HONGYU, YU QI, ZHANG SUFANG, et al. Nanosheet- assembled NiO microspheres modified by Sn2+ ions isovalent interstitial doping for xylene gas sensors. Sensors and Actuators B: Chemical, 2018, 269:210-222.
DOI URL |
[47] |
HAO PEI, QIU GE, SONG PENG, et al. Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors. Applied Surface Science, 2020, 515:146025.
DOI URL |
[48] |
LI ZHOU, YI JIANXIN. Enhanced ethanol sensing of Ni-doped SnO2 hollow spheres synthesized by a one-pot hydrothermal method. Sensors and Actuators B: Chemical, 2017, 243:96-103.
DOI URL |
[49] |
GUAN YUE, WANG DAWEI, ZHOU XIN, et al. Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures. Sensors and Actuators B: Chemical, 2014, 191:45-52.
DOI URL |
[1] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[2] | 何思哲, 王俊舟, 张勇, 费嘉维, 吴爱民, 陈意峰, 李强, 周晟, 黄昊. 高频低损耗的Fe/亚微米FeNi软磁复合材料[J]. 无机材料学报, 2024, 39(8): 871-878. |
[3] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[4] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[5] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[6] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[7] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[8] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[9] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[10] | 李广宇, 岳一凡, 王波, 张程煜, 索涛, 李玉龙. 2D-SiC/SiC复合材料的弹丸冲击损伤及冲击后拉伸性能[J]. 无机材料学报, 2024, 39(5): 494-500. |
[11] | 薛轶凡, 李玮洁, 张中伟, 庞旭, 刘愚. 碳纤维布表面PyC界面相微观结构及均匀性的工艺调控[J]. 无机材料学报, 2024, 39(4): 399-408. |
[12] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[13] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[14] | 马永杰, 刘永胜, 关康, 曾庆丰. CH4+C2H5OH+Ar体系热解的气相动力学研究[J]. 无机材料学报, 2024, 39(11): 1235-1244. |
[15] | 丁宁宁, 孙建华, 韦旭, 孙丽霞. 对氨基苯磺酸修饰MoO3/PPy复合材料室温下对氨气的监测[J]. 无机材料学报, 2024, 39(11): 1245-1253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||