无机材料学报 ›› 2020, Vol. 35 ›› Issue (12): 1385-1390.DOI: 10.15541/jim20200031 CSTR: 32189.14.10.15541/jim20200031
所属专题: 结构陶瓷论文精选(2020)
陈博文1,2,3(),王敬晓1,2,姜佑霖1,2,3,周海军1,2,廖春景1,2,张翔宇1,2,阚艳梅1,2,倪德伟1,2(
), 董绍明1,3
收稿日期:
2020-01-13
出版日期:
2020-12-20
网络出版日期:
2020-06-09
作者简介:
陈博文(1994–), 男, 博士研究生. E-mail: chenbowen@student.sic.ac.cn
CHEN Bowen1,2,3(),WANG Jingxiao1,2,JIANG Youlin1,2,3,ZHOU Haijun1,2,LIAO Chunjing1,2,ZHANG Xiangyu1,2,KAN Yanmei1,2,NI Dewei1,2(
), DONG Shaoming1,3
Received:
2020-01-13
Published:
2020-12-20
Online:
2020-06-09
About author:
CHEN Bowen(1994–), male, PhD candidate. E-mail: chenbowen@student.sic.ac.cn
Supported by:
摘要:
本研究提出了一种利用离心纺丝技术制备稳定碳化锆(ZrC)纤维的有效方法。此方法使用醋酸锆和蔗糖作为锆源和碳源, 聚乙烯吡咯烷酮(PVP)作为纺丝助剂, 经过1600 ℃的裂解与碳热还原热处理后, 所纺原丝转化成由均匀纳米ZrC晶体组成的ZrC纤维。研究结果表明, 纤维中残留的少量碳可助力ZrC纤维在2000 ℃的超高温环境下仍保持较好的结构稳定性。
中图分类号:
陈博文, 王敬晓, 姜佑霖, 周海军, 廖春景, 张翔宇, 阚艳梅, 倪德伟, 董绍明. 基于离心纺丝技术制备稳定的碳化锆纤维[J]. 无机材料学报, 2020, 35(12): 1385-1390.
CHEN Bowen, WANG Jingxiao, JIANG Youlin, ZHOU Haijun, LIAO Chunjing, ZHANG Xiangyu, KAN Yanmei, NI Dewei, DONG Shaoming. Stable Zirconium Carbide Fibers Fabricated by Centrifugal Spinning Technique[J]. Journal of Inorganic Materials, 2020, 35(12): 1385-1390.
Fig. 2 FT-IR spectra of ZrC precursors with different ZrO(CH3COO)2 : C12H22O11 ratios: (a) 4 : 1; (b) 4 : 1.2; (c) 4 : 1.5; and (d) ZrC precursor (with ZrO(CH3COO)2 : C12H22O11= 4 : 1.5) after pyrolysis at 600 ℃
Fig. 4 XRD patterns of ZrC fibers prepared from ZrC precursors with different ZrO(CH3COO)2:C12H22O11 ratios after heat- treatment at temperature range from 1400 to 1600 ℃ for 2 h (a) 4 : 1.5 @1400 ℃; (b) 4 : 1.5 @1500 ℃; (c) 4 : 1.5 @1600 ℃; (d) 4 : 1.2 @1600 ℃; (e) 4 : 1 @1600 ℃
Fig. 5 SEM images of ZrC fibers prepared from ZrC precursor with ZrO(CH3COO)2 : C12H22O11=4 : 1.5((a) as-spun green fibers; (b) after heat-treatment at 600 ℃ and (c) after heat- treatment at 1600 ℃); and (d) TEM image of ZrC fibers after heat-treatment at 1600 ℃ The insets in (a,b,c) are the corresponding local enlarged images; while the inset in (d) is the selected area electron diffraction (SAED) pattern of ZrC fibers
Fig. 6 SEM images of ZrC fibers prepared from ZrC precursors with different ZrO(CH3COO)2 : C12H22O11 ratios after heat-treatment at 2000 ℃ for 2 h (a, b) 4 : 1; (c, d) 4 : 1.2; (e, f) 4 : 1.5
[1] | FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007,90(5):1347-1364. |
[2] | ZHANG G J, NI D W, ZOU J, et al. Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra- high temperature ceramics—a review. J. Eur. Ceram. Soc., 2018,38(2):371-389. |
[3] | CHARBONNIER F M, MACKIE W A, HARTMAN R L, et al. Robust high current field emitter tips and arrays for vacuum microelectronics devices. J. Vac. Sci. Technol, B: Microelectron. Nanometer. Struct., 2001,19(3):1064-1072. |
[4] | COCKERAM B V, MEASURES D P, MUELLER A J. The development and testing of emissivity enhancement coatings for themophotovoltaic (TPV) radiator applications. Thin Solid Films, 1999,355(1):17-25. |
[5] | SHEATS J R, MACKIE W A, ANZ S, et al. Polymer electroluminescent devices with zirconium carbide cathodes. Pro. SPIE - Int. Soc. Opt. Eng., 1997,3148:219-227. |
[6] |
LI F, KANG Z, HUANG X, et al. Fabrication of zirconium carbide nanofibers by electrospinning. Ceram. Int., 2014,40(7):10137-10141.
DOI URL |
[7] | KUROKAWA Y, OTA H, SATO T. Preparation of carbide fibres by thermal decomposition of cellulose-metal (Ti, Zr) alkoxide gel fibres. J. Mate. Sci. Lett., 1994,13(7):516-518. |
[8] |
CUI X M, NAM Y S, LEE J Y, et al. Fabrication of zirconium carbide (ZrC) ultra-thin fibers by electrospinning. Mater. Lett., 2008,62(12/13):1961-1964.
DOI URL |
[9] | NAM Y S, CUI X M, JEONG L, et al. Fabrication and characterization of zirconium carbide (ZrC) nanofibers with thermal storage property. Thin Solid Films, 2009,517(24):6531-6538. |
[10] | FIRBAS P, SEEBER A, CHENG Y B. Creation of titanium and zirconium carbide fibers with the forcespinning technique. Int. J. App. Ceram. Technol., 2016,13(4):619-628. |
[11] | SHE J, ZHAN Y, PANG M, et al. In situ synthesized (ZrB2+ZrC) hybrid short fibers reinforced Zr matrix composites for nuclear applications. Int. J. Refract. Met. Hard Mater., 2011,29(3):401-404. |
[12] | LIU H Y, HOU X Q, WANG X Q, et al. Fabrication of high-strength continuous zirconia fibers and their formation mechanism study. J. Am. Ceram. Soc., 2004,87(12):2237-2241. |
[13] | TAO X, QIU W, LI H, et al. Synthesis of nanosized zirconium carbide from preceramic polymers by the facile one-pot reaction. Polym. Adv. Technol., 2010,21(4):300-304. |
[14] | DONG Z, ZHANG X, HUANG Q, et al. Synthesis and pyrolysis behavior of a soluble polymer precursor for ultra-fine zirconium carbide powders. Ceram. Int., 2015,41(6):7359-7365. |
[15] | LI F, LIANG M, MA X F, et al. Preparation and characterization of stoichiometric zirconium carbide foams by direct foaming of zirconia sols. J. Porous Mater., 2015,22(2):493-500. |
[16] | WANG J X, NI D W, DONG S M, et al. Synthesis of nanocrystallized zirconium carbide based on an aqueous solution-derived precursor. RSC Adv., 2017,37(7):22722-22727. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[3] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[4] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[7] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[8] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[9] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[10] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[13] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||