无机材料学报 ›› 2020, Vol. 35 ›› Issue (8): 902-908.DOI: 10.15541/jim20190462 CSTR: 32189.14.10.15541/jim20190462
所属专题: 功能材料论文精选(二):发光材料(2020); 【虚拟专辑】LED发光材料
彭跃红1,2(),任韦舟1,邱建备1,韩缙1,杨正文1,宋志国1(
)
收稿日期:
2019-09-06
修回日期:
2019-11-04
出版日期:
2020-08-20
网络出版日期:
2020-03-06
作者简介:
彭跃红(1983–), 男, 博士研究生. E-mail: 基金资助:
PENG Yuehong1,2(),REN Weizhou1,QIU Jianbei1,HAN Jin1,YANG Zhengwen1,SONG Zhiguo1(
)
Received:
2019-09-06
Revised:
2019-11-04
Published:
2020-08-20
Online:
2020-03-06
Supported by:
摘要:
由于热耦合能级(TCLs)差的影响, 传统稀土上转换(UC)光学温度传感技术的灵敏度受到了极大限制, 探索超灵敏温度特性上转换发光材料具有重要的理论和技术价值。本工作研究了1550 nm激光激发下Er 3+单掺BiOCl的上转换发光及温度传感性能。在近红外激发下, BiOCl:Er 3+展现出强烈的670 nm红光发射、弱的525和542 nm绿光发射、微弱的406 nm紫光发射以及983 nm 近红外发光。该上转换材料体系的红绿光发射表现出强烈的温度依赖性, 在300~563 K温度范围内, 4F9/2/ 4S3/2非热耦合能级绝对灵敏度(SA)达到95.3×10 -3 K -1, 是 2H11/2/ 4S3/2热耦合能级的22倍; 同时相对灵敏度(SR)达到了1.19% K -1。1550 nm激发下BiOCl:Er 3+的强烈红色上转换发光和高灵敏温度传感特性在显示及光学温度传感方面具有良好的应用前景。
中图分类号:
彭跃红,任韦舟,邱建备,韩缙,杨正文,宋志国. 1550 nm激发层状BiOCl:Er3+上转换发光及温度传感特性[J]. 无机材料学报, 2020, 35(8): 902-908.
PENG Yuehong,REN Weizhou,QIU Jianbei,HAN Jin,YANG Zhengwen,SONG Zhiguo. Upconversion Luminescence and Temperature Sensing Properties of Layered BiOCl: Er3+ under 1550 nm Excitation[J]. Journal of Inorganic Materials, 2020, 35(8): 902-908.
图1 不同浓度Er3+掺杂BiOCl的XRD图谱(a), Er3+浓度对主衍射峰的影响(b), BiOCl:Er3+的SEM照片(c)和BiOCl的晶体结构模型(d)
Fig. 1 XRD patternsof BiOCl with different Er3+ concentrations (a), effect of Er3+ concentration on the main diffraction peak near 2θ = 32o-34.5o (b), SEM image of BiOCl:Er3+(c), and the structure modelof BiOCl crystal (d)
图2 1550 nm激发下BiOCl:xEr3+ (x=1mol%, 2mol%, 3mol%, 4mol%, 5mol%)的上转换光谱图(a)和Ired/Igreen与Er3+浓度的关系图(b)
Fig. 2 UC spectra (a) of BiOCl with different Er3+ concentrations (from 1mol% to 5mol%) under 1550 nm excitation and the dependence of Ired/Igreen on Er3+ concentrations (b) Insets in (a) are the enlarged spectra in the violet region and photograph of BiOCl:4mol%Er3+
图3 上转换发射与功率的关系(a)和Er3+的能级图以及1550 nm激发下BiOCl:Er3+可能的上转换机制(b)
Fig. 3 Dependence of the UC emission on power (a), energy-level diagram of Er3+ and possible up-conversion mechanism of BiOCl:Er3+ under 1550 nm excitation (b) Solid lines show absorption and emission, while dashed lines represent nonradiative relaxation
图4 1550 nm激发下BiOCl:4mol%Er3+在不同温度的归一化上转换光谱(a), 525、542和670 nm 发射的相对强度和温度的关系(b), 以及温度对Ired/Igreen的影响(c)
Fig. 4 Normalized up-conversion emission spectra of BiOCl:4mol%Er3+ under 1550 nm excitation at various temperatures (300-560 K) (a), relative intensities of 525, 542 and 670 nm emissions as a function of temperature (b), and the dependence of Ired/Igreen on temperature (c)
图5 荧光强度比、绝对灵敏度(SA)和相对灵敏度(SR)与温度的关系
Fig. 5 Dependence of the fluorescence intensity ratio, the absolute sensitivity (SA) and the relative sensitivity (SR) on temperature (a, c) I670/I542; (b, d) I525/I542 Insets in (a) and (b) show temperature-induced switching of I670/I542 and I525/I542 (alternating between 300 and 560 K), respectively
UC materials | R | Temperature range/K | SA/(×10-3, K-1) | SR/(%, K-1) | Reference |
---|---|---|---|---|---|
NaYF4:Er3+/Yb3+/Li+ | I523/I547 | 300-453 | 5.9 | 1.46 | [11] |
KMnF3:Yb3+/Er3+ | Ired/Igreen | 303-390 | 11.3 | 5.7 | [2] |
YWO6:0.1Yb3+/0.02Er3+ | I524/I675 | 303-563 | 2.2 | 1.2 | [8] |
Ba2In2O5:Yb3+/Er3+ | I658/I549 | 303-563 | 480 | — | [10] |
BiOCl:Er3+ | I525/I542 | 300-560 | 4.23 | 1.15 | This work |
BiOCl:Er3+ | I670/I542 | 300-560 | 95.3 | 1.19 | This work |
表1 Er3+掺杂的几种上转换材料的最大温度灵敏度
Table 1 Maximum temperature sensitivity for several Er3+ doped UC materials
UC materials | R | Temperature range/K | SA/(×10-3, K-1) | SR/(%, K-1) | Reference |
---|---|---|---|---|---|
NaYF4:Er3+/Yb3+/Li+ | I523/I547 | 300-453 | 5.9 | 1.46 | [11] |
KMnF3:Yb3+/Er3+ | Ired/Igreen | 303-390 | 11.3 | 5.7 | [2] |
YWO6:0.1Yb3+/0.02Er3+ | I524/I675 | 303-563 | 2.2 | 1.2 | [8] |
Ba2In2O5:Yb3+/Er3+ | I658/I549 | 303-563 | 480 | — | [10] |
BiOCl:Er3+ | I525/I542 | 300-560 | 4.23 | 1.15 | This work |
BiOCl:Er3+ | I670/I542 | 300-560 | 95.3 | 1.19 | This work |
Er3+ concentration | R | SA/(×10-3, K-1) | SR/(%, K-1) |
---|---|---|---|
4mol% | I670/I542=188.52exp(-1070.58/T) | 95.3 | 1.19 |
5mol% | I670/I542=231.85exp(-994.74/T) | 126.2 | 1.11 |
表2 不同浓度Er3+掺杂BiOCl的最大温度灵敏度
Table 2 Maximum temperature sensitivity for BiOCl with different Er3+ concentrations
Er3+ concentration | R | SA/(×10-3, K-1) | SR/(%, K-1) |
---|---|---|---|
4mol% | I670/I542=188.52exp(-1070.58/T) | 95.3 | 1.19 |
5mol% | I670/I542=231.85exp(-994.74/T) | 126.2 | 1.11 |
[1] |
DONG BIN, CAO BAO-SHENG, HE YANG-YANG, et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Advanced Materials, 2012,24(15):1987-1993.
DOI URL PMID |
[2] |
CUI XIANG-SHUI, CHENG YAO, LIN HANG, et al. Towards ultra-high sensitive colorimetric nanothermometry: constructing thermal coupling channel for electronically independent levels. Sensors and Actuators B: Chemical, 2018,256:498-503.
DOI URL |
[3] |
GAO YAN, HUANG FENG, LIN HANG, et al. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Advanced Functional Materials, 2016,26(18):3139-3145.
DOI URL |
[4] |
SILVA A F, ELAN F, FALCAO-FILHO E L, et al. Thermal sensitivity of frequency upconversion in Al4B2O9: Yb 3+/Nd 3+ nanoparticles . Journal of Materials Chemistry C, 2017,5(5):1240-1246.
DOI URL |
[5] |
JIANG SHA, ZENG PENG, LIAO LI-QING, et al. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4: Yb 3+/Er 3+ nanocrystals . Journal of Alloys and Compounds, 2014,617:538-541.
DOI URL |
[6] | TONG LI-LI, LI XIANG-PING, HUA RUI-NIAN, et al. Optical temperature sensing properties of Yb 3+/Tm 3+ co-doped NaLuF4 crystals, Current Applied Physics, 2017,17(7):999-1004. |
[7] |
PANDEY A, RAI V K. Improved luminescence and temperature sensing performance of Ho 3+-Yb 3+-Zn 2+: Y2O3 phosphor . Dalton Trans., 2013,42(30):11005-11011.
DOI URL PMID |
[8] |
ZHANG JIA, JI BAO-WEI, CHEN GUI-BIN, et al. Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application. Inorganic Chemistry, 2018,57(9):5038-5047.
DOI URL PMID |
[9] |
ZHANG JIA, CHEN GUI-BIN, ZHAI ZHANG-YIN, et al. Optical temperature sensing using upconversion luminescence in rare-earth ions doped Ca2Gd8(SiO4)6O2 phosphors. Journal of Alloys and Compounds, 2019,771:838-846.
DOI URL |
[10] |
WANG ZHI-YING, JIAO HUAN, FU ZUO-LING. Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba2In2O5 phosphor. Journal of Luminescence, 2019,206:273-277.
DOI URL |
[11] |
DUBEY A, SONI A K, KUMARI A, et al. Enhanced green upconversion emission in NaYF4: Er 3+/Yb 3+/Li + phosphors for optical thermometry . Journal of Alloys and Compounds, 2017,693:194-200.
DOI URL |
[12] |
DU PENG, HUANG XIAO-YONG, YU J S. Yb 3+ concentration dependent upconversion luminescence and temperature sensing behavior in Yb 3+/Er 3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted Sol-Gel method . Inorganic Chemistry Frontiers, 2017,4(12):1987-1995.
DOI URL |
[13] |
NIU SI-YING, ZHANG RUO-YU, ZHOU XIAN-JU, et al. The enhanced photocatalytic activity of Yb 3+-Ho 3+/Er 3+ co-doped 3D BiOCl flower . Dyes and Pigments, 2018,149:462-469.
DOI URL |
[14] |
LI YONG-JIN, SONG ZHI-GUO, LI CHEN, et al. High multi- photon visible upconversion emissions of Er 3+ singly doped BiOCl microcrystals: a photon avalanche of Er 3+ induced by 980 nm excitation . Applied Physics Letters, 2013,103(23):231104.
DOI URL |
[15] |
LI YONG-JIN, HU RUI, ZHAGN XIANG-ZHOU, et al. Emergence of photoluminescence enhancement of Eu 3+ doped BiOCl single-crystalline nanosheets at reduced vertical dimensions . Nanoscale, 2018,10(10):4865-4871.
DOI URL PMID |
[16] |
LI YONG-JIN, SONG ZHI-GUO, YAO LU, et al. Morphology/dimensionality induced tunable upconversion luminescence of BiOCl: Yb 3+/Er 3+ nano/microcrystals: intense single-band red emission and underlying mechanisms . CrystEngComm, 2018,20(20):2850-2860.
DOI URL |
[17] |
LIU TONG, SONG YA-PAI, WANG SHA-SHA, et al. Two distinct simultaneous NIR looping behaviours of Er 3+ singly doped BiOBr: The underlying nature of the Er 3+ ion photon avalanche emission induced by a layered structure . Journal of Alloys and Compounds, 2019,779:440-449.
DOI URL |
[18] |
WU WEI-WEI, CHEN DA-QIN, ZHOU YANG, et al. Near-single- band red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets. Journal of Alloys and Compounds, 2016,682:275-283.
DOI URL |
[19] |
HUANG XIAO-YONG, LI BIN, GUO HENG. Synthesis, photoluminescence, cathodoluminescence, and thermal properties of novel Tb 3+-doped BiOCl green-emitting phosphors . Journal of Alloys and Compounds, 2017,695:2773-2780.
DOI URL |
[20] |
DU PENG, LUO LAI-HUI, YU J S. Tunable color upconverison emissions in erbium(III)-doped BiOCl microplates for simultaneous thermometry and optical heating. Microchimica Acta, 2017,184(8):2661-2669.
DOI URL |
[21] |
ZHANG GONG, SONG FENG, MING CHENG-GUO, et al. Photoluminescence properties and pump-saturation effect of Er 3+/Yb 3+ co-doped Y2Ti2O7 nanocrystals . Journal of Luminescence, 2012,132(3):774-779.
DOI URL |
[22] |
LIN HAO, XU DE-KANG, LI AN-MING, et al. Enhanced red upconversion emission and its mechanism in Yb 3+-Er 3+ codoped α-NaLuF4 nanoparticles . New Journal of Chemistry, 2017,41(3):1193-1201.
DOI URL |
[23] |
POLLNAU M, GAMELIN D R, LUTHI S R, et al. Power dependence of upconversion luminescence in lanthanide and transition- metal-ion systems. Physical Review B, 2000,61(5):3337-3346.
DOI URL |
[24] |
PANDEY A, RAI V K, KUMAR V, et al. Upconversion based temperature sensing ability of Er 3+-Yb 3+ codoped SrWO4: an optical heating phosphor . Sensors and Actuators B: Chemical, 2015,209:352-358.
DOI URL |
[25] |
CHEN DA-QIN, XU MIN, HUAGN PING. Core@shell upconverting nanoarchitectures for luminescent sensing of temperature. Sensors and Actuators B: Chemical, 2016,231:576-583.
DOI URL |
[26] |
LIU QUN, LI YONG-JIN, SONG ZHI-GUO, et al. Effect of Zn 2+ dopant on photon avalanche upconversion behavior of BiOCl: Er 3+ crystals . Journal of Rare Earths, 2015,33(10):1098-1103.
DOI URL |
[27] |
GUO YANG-YANG, LI JIAN-YONG, SUN JIAN. Oxygen vacancy-assistant enhancement of photoluminescence performance of Eu 3+ and La 3+-codoped BiOCl ultrathin nanosheets . Journal of Luminescence, 2019,208:267-272.
DOI URL |
[28] |
YIN XIU-MEI, WANG HONG, XING MING-MING, et al. High color purity red emission of Y2Ti2O7:Yb 3+, Er 3+ under 1550 and 980 nm excitation . Journal of Luminescence, 2017,182:183-188.
DOI URL |
[1] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[2] | 张志洁,黄海瑞,程昆,郭少柯. 高效碳量子点/BiOCl纳米复合材料用于光催化污染物降解[J]. 无机材料学报, 2020, 35(4): 491-496. |
[3] | 张伟,高鹏,侯成义,李耀刚,张青红,王宏志. 基于ZnO复合材料的芯片式pH和温度传感器[J]. 无机材料学报, 2020, 35(4): 416-422. |
[4] | 吕喜庆, 张环宇, 李瑞, 张梅, 郭敏. Nb2O5包覆对TiO2纳米阵列/上转换发光复合结构柔性染料敏化太阳能电池性能的影响[J]. 无机材料学报, 2019, 34(6): 590-598. |
[5] | 史忠祥, 王晶, 关昕. Er3+掺杂调控NaY(WO4)2: Dy3+的上转换发光性能[J]. 无机材料学报, 2018, 33(5): 521-527. |
[6] | 陈凡丽, 李永进, 张相周, 徐祖元, 胡 锐, 邱建备, 杨正文, 宋志国. Zn2+掺杂诱导Eu3+激活BiOCl层状半导体的反常发光性能研究[J]. 无机材料学报, 2017, 32(8): 877-883. |
[7] | 李永进, 刘群, 周玉婷, 邱建备, 宋志国. Yb3+-Tm3+共掺BiOBr纳米晶的近红外上转换发光特性研究[J]. 无机材料学报, 2016, 31(3): 279-284. |
[8] | 杨广武, 杨瑞霞, 张守超, 朱 飞. Ce3+浓度对YVO4: Ce3+晶体发光性能的影响[J]. 无机材料学报, 2016, 31(10): 1073-1080. |
[9] | 周佳佳, 邱建荣. 单个纳米颗粒的上转换光谱现象研究[J]. 无机材料学报, 2016, 31(10): 1023-1030. |
[10] | 陈建钗, 余长林, 李家德, 方 稳, 何洪波. 研磨-焙烧法制备La2O3/BiOCl复合光催化剂及其对高浓度染料降解性能[J]. 无机材料学报, 2015, 30(9): 943-949. |
[11] | 朱美娟, 余建定, 张明辉, 谷彦静, 李 勤, 方必军, 赵洪阳, 沈 清. 无容器制备Er3+/Yb3+共掺La2O3-TiO2-ZrO2玻璃及其上转换发光研究[J]. 无机材料学报, 2015, 30(4): 391-396. |
[12] | 张继红, 陶海征, 顾少轩, 张高科, 刘 超, 赵修建. 面向太阳光全光谱应用铒掺杂硫卤玻璃上转换发光特性研究[J]. 无机材料学报, 2015, 30(3): 245-248. |
[13] | 向军涛, 杜 鹏, 罗来慧, 方义权, 赵学洋, 胡旭波, 陈红兵. Er3+掺杂弛豫铁电材料PMNT的单晶生长与性能表征[J]. 无机材料学报, 2015, 30(2): 135-140. |
[14] | 耿志明, 李 坤, 施东良, 施瑕玉, 黄海涛, 陈王丽华. 铌酸钾钠基透明上转换陶瓷材料制备及性能[J]. 无机材料学报, 2014, 29(12): 1265-1269. |
[15] | 张明辉,余建定,潘秀红,程愉悻,刘 岩. Nd3+/Yb3+共掺La2O3-TiO2-ZrO2微晶玻璃的制备及上转换发光研究[J]. 无机材料学报, 2013, 28(8): 896-900. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||