无机材料学报 ›› 2020, Vol. 35 ›› Issue (1): 73-78.DOI: 10.15541/jim20190278
所属专题: MAX相和MXene材料; MXene材料专辑(2020~2021)
收稿日期:
2019-06-06
修回日期:
2019-09-03
出版日期:
2020-01-20
网络出版日期:
2019-10-25
作者简介:
王昌英(1988-), 女, 讲师. E-mail:wcy58462006@126.com
基金资助:
WANG Chang-Ying1,LU Yu-Chang2,REN Cui-Lan2(),WANG Gang1,HUAI Ping2,3()
Received:
2019-06-06
Revised:
2019-09-03
Published:
2020-01-20
Online:
2019-10-25
About author:
WANG Chang-Ying (1988-), female, lecturer. E-mail:wcy58462006@126.com
Supported by:
摘要:
MXene是一类具备丰富物理化学性质的新型二维过渡金属碳化物, 在储能、催化、复合材料、发光材料等领域都表现出潜在的应用前景。元素掺杂、结构缺陷、表面功能化、外加电场、外加应力等方法是调节二维材料性能的有效手段。作为厚度最小和最轻的含钛MXene材料, Ti2CO2具有间接半导体特性, 本工作研究外加电场、外加应力和电荷态等条件对Ti2CO2电学性能的调控。结果表明:无缺陷Ti2CO2原胞的带隙随着外加电场的增强而变小。在Ti2CO2体系中, 碳空位较易形成。研究发现拉伸应力可以改变含碳空位体系的导电能力, 费米能级附近的能带随着拉伸应力的增大而逐渐平滑。研究还发现电荷态会改变含碳空位2×2×1 Ti2CO2超胞的能带结构, 随着电荷态的增加, 体系费米能级的位置逐渐降低, 且电荷态为+2时, 含碳空位2×2×1 Ti2CO2超胞表现出半导体特性, 带隙类型转变为直接带隙, 带隙值为0.489 eV。
中图分类号:
王昌英, 路宇畅, 任翠兰, 王刚, 怀平. 电场、应力和电荷态对Ti2CO2电子性质调控的理论研究[J]. 无机材料学报, 2020, 35(1): 73-78.
WANG Chang-Ying, LU Yu-Chang, REN Cui-Lan, WANG Gang, HUAI Ping. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States[J]. Journal of Inorganic Materials, 2020, 35(1): 73-78.
图1 (a) MAX相Ti2AlC结构图, (b) 2×2×1 Ti2C超胞的侧视图(上)和俯视图(下), (c) 2×2×1 Ti2CO2超胞的侧视图(上)和俯视图(下) The blue, green, black, red and silver ball represent the upper layer Ti, sublayer Ti, carbon, oxygen, and aluminum atoms, respectively. The unit cell of Ti2CO2 is marked by the dashed black line in (c) and the carbon vacancy is marked by the dashed red line
Fig. 1 (a) Geometrical structure of Ti2AlC MAX phase, (b) side view (upper panel) and top view (lower panel) of 2×2×1 Ti2C supercell, and (c) side view (upper panel) and top view (lower panel) of 2×2×1 Ti2CO2 supercell
图2 外界电场对Ti2CO2原胞能带结构的影响, 虚线表示体系费米能级的位置
Fig. 2 Band structures of perfect Ti2CO2 under each perpendicular external electric field. The horizontal dashed lines are the Fermi level
图3 双轴应变(0~7%)对含碳空位2×2×1 Ti2CO2超胞能带结构的影响, 虚线表示体系费米能级的位置
Fig. 3 Band structures of 2×2×1 Ti2CO2 supercells with a carbon vacancy under various biaxial tension strains from 0 to 7%. The horizontal dashed lines are the Fermi level
图S1 双轴应变(0~7%)对含碳空位2×2×1 Ti2CO2超胞态密度的影响, 虚线表示体系费米能级的位置
Fig. S1 Total density of states for 2×2×1 Ti2CO2 supercells with a carbon vacancy under various biaxial tension strains from 0 to 7%. The horizontal dashed lines are the Fermi level
图S2 单轴应变(0~7%)对含碳空位2×2×1 Ti2CO2超胞能带结构的影响, 虚线表示体系费米能级的位置
Fig. S2 Band structures of 2×2×1 Ti2CO2 supercells with a carbon vacancy under various uniaxial tension strains from 0 to 7%. The horizontal dashed lines are the Fermi level
图4 电荷态对含碳空位2×2×1 Ti2CO2超胞能带结构的影响, 虚线表示体系费米能级的位置
Fig. 4 Effects of (a) 0, (b) +1, (c) +2, and (d) +3 charge states on the band structures of 2×2×1 Ti2CO2 supercells with a carbon vacancy. The horizontal dashed lines are the Fermi level
图S3 电荷态对含碳空位3×3×1 Ti2CO2超胞能带结构的影响, 虚线表示体系费米能级的位置。
Fig. S3 The effects of (a) 0, (b) +1, (c) +2 and (d) +3 charge states on the band structures of 3×3×1 Ti2CO2 supercells with a carbon vacancy. And the effects of (e) 0, (f) +1, (g) +2 and (h) +3 charge states on the band structures of 4×4×1 Ti2CO2 supercells with a carbon vacancy. The horizontal dashed lines are the Fermi level
[1] |
FIORI G, BONACCORSO F, IANNACCONE G , et al. Electronics based on two-dimensional materials. Nature Nanotechnology, 2014,9:768-779.
DOI URL |
[2] |
XIA F, WANG H, XIAO D , et al. Two-dimensional material nanophotonics. Nature Photonics, 2014,8:899-907.
DOI URL |
[3] |
AKINWANDE D, PETRONE N, HONE J . Two-dimensional flexible nanoelectronics. Nature Communications, 2014,5:5678.
DOI URL PMID |
[4] |
BARSOUM M W . The Mn+1AXn phases: a new class of solids. Progress in Solid State Chemistry, 2000,28:201-281.
DOI URL PMID |
[5] |
LI M, LI Y B, LUO K , et al. Synthesis of novel MAX Phase Ti3ZnC2 via A-site-element-substitution approach. Journal of Inorganic Materials, 2019,34:60-64.
DOI URL |
[6] |
NAGUIB M, KURTOGLU M, PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23:4248-4253.
DOI URL PMID |
[7] |
ZHAO Y, ZHAO J . Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Applied Surface Science, 2017,412:591-598.
DOI URL |
[8] |
SIM E S, YI G S, JE M , et al. Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: a density functional theory study. Journal of Power Sources, 2017,342:64-69.
DOI URL |
[9] |
ZHANG X, LEI J, WU D , et al. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 2016,4:4871-4876.
DOI URL |
[10] |
ZHANG X, ZHANG Z, LI J , et al. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry A, 2017,5:12899-12903.
DOI URL |
[11] |
ZHAO M Q, REN C E, LING Z , et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 2015,27:339-345.
DOI URL PMID |
[12] |
XU Q, DING L, WEN Y , et al. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. Journal of Materials Chemistry C, 2018,6:6360-6369.
DOI URL |
[13] |
ZHANG L, SU W, SHU H , et al. Tuning the photoluminescence of large Ti3C2Tx MXene flakes. Ceramics International, 2019,45(9):11468-11474.
DOI URL |
[14] |
ZHA X H, ZHOU J, ZHOU Y , et al. Promising electron mobility and high thermal conductivity in Sc2CT2(T=F, OH) MXenes. Nanoscale, 2016,8:6110-6117.
DOI URL PMID |
[15] |
ZHA X H, REN J C, FENG L , et al. Bipolar magnetic semiconductors among intermediate states during the conversion from Sc2C(OH)2 to Sc2CO2 MXene. Nanoscale, 2018,10:8763-8771.
DOI URL PMID |
[16] |
ZHOU J, ZHA X H, YILDIZHAN M , et al. Two-dmensional hydroxyl-functionalized and carbon-deficient scandium carbide, ScCxOH, a direct band gap semiconductor. ACS Nano, 2019,13:1195-1203.
DOI URL PMID |
[17] |
FAN M, WANG L, ZHANG Y , et al. Research progress of MXene materials in radioactive element and heavy metal ion sequestration. Scientia Sinica Chimica, 2019,49:27.
DOI URL |
[18] |
NAGUIB M, MASHTALIR O, CARLE J , et al. Two-dimensional transition metal carbides. ACS Nano, 2012,6:1322-1331.
DOI URL PMID |
[19] |
URBANKOWSKI P, ANASORI B, MAKARYAN T , et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene). Nanoscale, 2016,8:11385-11391.
DOI URL PMID |
[20] |
ZHOU J, ZHA X, CHEN F Y , et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angewandte Chemie International Edition, 2016,55:5008-5013.
DOI URL PMID |
[21] |
ZHOU J, ZHA X, ZHOU X , et al.Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 2017,11(4):3841-3850.
DOI URL PMID |
[22] |
NAGUIB M, HALIM J, LU J , et al.New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 2013,135:15966-15969.
DOI URL PMID |
[23] |
HALIM J, KOTA S, LUKATSKAYA M R , et al.Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 2016,26:3118-3127.
DOI URL PMID |
[24] |
GHIDIU M, NAGUIB M, SHI C , et al. Synthesis and characterization of two-dimensional Nb4C3(MXene). Chemical Communications, 2014,50:9517-9520.
DOI URL |
[25] |
LIU G Q, JIANG X J, ZHOU J , et al. Synthesis and theoretical study of conductive Mo1.33CT2 MXene. Journal of Inorganic Materials, 2019,34:775-780.
DOI URL |
[26] |
KHAZAEI M, ARAI M, SASAKI T , et al.Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013,23(17):2185-2192.
DOI URL |
[27] |
LI M, LU J, LUO K , et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019,141:4730-4737.
DOI URL PMID |
[28] |
ZHANG H, YANG G, ZUO X , et al. Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 2016,4:12913-12920.
DOI URL |
[29] |
UĞUR Y, AYBERK Ö, NIHANi K P , et al.Vibrational and mechanical properties of single layer MXene structures: a first- principles investigation. Nanotechnology, 2016,27:335702.
DOI URL PMID |
[30] |
CHAKRABORTY P, DAS T, NAFDAY D , et al. Manipulating the mechanical properties of Ti2C MXene: effect of substitutional doping. Physical Review B, 2017,95:184106.
DOI URL |
[31] |
GUO Z, ZHOU J, SI C , et al. Flexible two-dimensional Tin+1Cn (n= 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Physical Chemistry Chemical Physics, 2015,17:15348-15354.
DOI URL PMID |
[32] |
MAPASHA R E, MOLEPO M P, ANDREW R C , et al.Defect charge states in Si doped hexagonal boron-nitride monolayer. Journal of Physics: Condensed Matter, 2016,28:055501.
DOI URL PMID |
[33] |
SALEHI S, SAFFARZADEH A . Atomic defect states in monolayers of MoS2 and WS2. Surface Science, 2016,651:215-221.
DOI URL PMID |
[34] |
FENG L, ZHA X H, LUO K , et al. Structures and mechanical and electronic properties of the Ti2CO2 MXene incorporated with neighboring elements (Sc, V, B and N). Journal of Electronic Materials, 2017,46:2460-2466.
DOI URL |
[35] |
LI J, DU Y, HUO C , et al. Thermal stability of two-dimensional Ti2C nanosheets. Ceramics International, 2015,41:2631-2635.
DOI URL |
[36] |
ZHOU Y, ZHAI G, YAN T , et al. Effects of different surface functionalization and doping on the electronic transport properties of M2CTx-M2CO2 heterojunction devices. The Journal of Physical Chemistry C, 2018,122:14908-14917.
DOI URL |
[37] |
ZHANG Y, ZHA X H, LUO K , et al. Tuning the electrical conductivity of Ti2CO2 MXene by varying the layer thickness and applying strains. The Journal of Physical Chemistry C, 2019,123:6802-6811.
DOI URL |
[38] |
ZHOU Y, LUO K, ZHA X , et al. Electronic and transport properties of Ti2CO2 MXene nanoribbons. The Journal of Physical Chemistry C, 2016,120:17143-17152.
DOI URL |
[39] |
WANG C Y, H H, GUO Y L . Stabilities and electronic properties of vacancy-doped Ti2CO2. Computational Materials Science, 2019,159:127-135.
DOI URL |
[40] |
KRESSE G, FURTHMÜLLER J . Efficient iterative schemes for ab initi. total-energy calculations using a plane-wave basis set. Physical Review B, 1996,54:11169-11186.
DOI URL PMID |
[41] |
BLÖCHL P E . Projector augmented-wave method. Physical Review B, 1994,50:17953-17979.
DOI URL PMID |
[42] |
PERDEW J P, BURKE K, ERNZERHOF M . Generalized gradient approximation made simple. Physical Review Letters, 1996,77:3865-3868.
DOI URL PMID |
[43] |
BANDYOPADHYAY A, GHOSH D, PATI S K . Effects of point defects on the magnetoelectronic structures of MXenes from first principles. Physical Chemistry Chemical Physics, 2018,20:4012-4019.
DOI URL PMID |
[44] |
XIE Y, KENT P R C . Hybrid density functional study of structural and electronic properties of functionalized Ti n+1Xn(X=C,N) monolayersPhysical Review B, 2013,87:235441.
DOI URL |
[45] |
YU X F, CHENG J B, LIU Z B , et al. The band gap modulation of monolayer Ti2CO2 by strain. RSC Advances, 2015,5:30438-30444.
DOI URL |
[1] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
[2] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[3] | 陈雷, 胡海龙. 柔性PDMS基介电复合材料的电场及击穿损伤形貌演变规律研究[J]. 无机材料学报, 2023, 38(2): 155-162. |
[4] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[5] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[6] | 陈莹, 栾伟玲, 陈浩峰, 朱轩辰. 基于应力场的锂离子电池正极多尺度失效研究[J]. 无机材料学报, 2022, 37(8): 918-924. |
[7] | 文志勤, 黄彬荣, 卢涛仪, 邹正光. 压力对PbTiO3结构和热物性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(7): 787-794. |
[8] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[9] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[10] | 袁罡, 马新国, 贺华, 邓水全, 段汪洋, 程正旺, 邹维. 平面应变对二维单层MoSi2N4能带结构和光电性质的影响[J]. 无机材料学报, 2022, 37(5): 527-533. |
[11] | 李海燕, 郝鸿渐, 田远, 汪长安, 包亦望, 万德田. 残余应力对涂覆Al2O3涂层的ZrO2陶瓷的强度和裂纹扩展阻力的影响[J]. 无机材料学报, 2022, 37(4): 467-472. |
[12] | 冯清影, 刘东, 张莹, 冯浩, 李强. 太阳能驱动的两步热化学循环二氧化碳裂解反应活性材料的热力学与第一性原理评价[J]. 无机材料学报, 2022, 37(2): 223-229. |
[13] | 郝鸿渐, 李海燕, 万德田, 包亦望, 李月明. 莫来石/氧化铝预应力涂层增强氧化铝的弯曲强度和抗热震性能[J]. 无机材料学报, 2022, 37(12): 1295-1301. |
[14] | 彭军辉, TIKHONOV Evgenii. 空位对Hf-Ta-C体系的结构、力学性质及电子性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(1): 51-57. |
[15] | 朱子旻, 张敏慧, 张轩宇, 姚爱华, 林健, 王德平. 硼硅酸盐生物活性玻璃在直流电场下的体外矿化性能[J]. 无机材料学报, 2021, 36(9): 1006-1012. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||