无机材料学报 ›› 2019, Vol. 34 ›› Issue (10): 1047-1054.DOI: 10.15541/jim20190003 CSTR: 32189.14.10.15541/jim20190003
所属专题: MAX相和MXene材料; 副主编黄庆研究员专辑
收稿日期:
2018-12-29
修回日期:
2019-02-11
出版日期:
2019-09-23
网络出版日期:
2019-05-29
作者简介:
王 中(1992-), 男, 硕士研究生. E-mail: wzhong@nimte.ac.cn
基金资助:
WANG Zhong1,2,ZHA Xian-Hu2,WU Ze1(),HUANG Qing2,DU Shi-Yu2(
)
Received:
2018-12-29
Revised:
2019-02-11
Published:
2019-09-23
Online:
2019-05-29
Supported by:
摘要:
为了揭示掺杂离子对具有磁铅石构型的锶铁氧体材料磁性能的影响, 本研究探讨了锶铁氧体及其锰掺杂体系的稳定构型及其磁结构。研究结果表明, 锶铁氧体为亚铁磁性, 与前期的研究结果相吻合。通过比较GGA和GGA+U计算方法, 发现U值的选取对体系的电子结构和原子磁矩有显著影响。当U值为3.7 eV时, 体系由金属性转变为自旋向上带隙为1.71 eV的半导体。原胞总磁矩为40 μB。对于Mn替换掺杂的SrFe12-xMnxO19体系, 通过不同占据位能量比较, 当单个Mn原子替换(x=0.5)时, Mn离子优先占据Fe (12k)位置; 而当两个Mn原子替换Fe原子(x=1.0)时, 两个Mn分别占据Fe (12k)和Fe (2a)位置。Mn掺杂对锶铁氧体的结构影响较小, 但对于体系的总磁矩和电子结构有较明显的影响。在Mn含量x=0.5和x=1.0时, 自旋向上带隙值分别降低到0.85和0.59 eV, 原胞的总磁矩为39和38 μB。本研究可为实验研究提供理论指导。
中图分类号:
王中, 查显弧, 吴泽, 黄庆, 都时禹. Mn掺杂锶铁氧体SrFe12O19电子结构及磁性的第一性原理研究[J]. 无机材料学报, 2019, 34(10): 1047-1054.
WANG Zhong, ZHA Xian-Hu, WU Ze, HUANG Qing, DU Shi-Yu. First-principles Study on Electronic and Magnetic Properties of Mn-doped Strontium Ferrite SrFe12O19[J]. Journal of Inorganic Materials, 2019, 34(10): 1047-1054.
图1 锶铁氧体晶胞结构
Fig. 1 The unit cell of SrFe12O19 (a) The green ball denotes the Sr atom, the small grey ball denotes the O atom; (b) The blue, red, purple, magenta, and blue-green balls represent the Fe atoms in 12k, 4f2, 4f1, 2a, and 2b sites, respectively. The spin directions for different Fe3+ are labeled with different colors (black and red)
Spin direction of Fe ions in SrFe12O19 | a/nm | c/nm | Energy/(eV?(unit cell)-1) | Moment/(μB?(unit cell)-1) | ||||
---|---|---|---|---|---|---|---|---|
2a | 2b | 4f1 | 4f2 | 12k | ||||
+ | + | + | + | + | 0.5730 | 2.257 | 0 | 25.00 |
- | + | + | + | + | 0.5690 | 2.239 | 0.5900 | 48.00 |
+ | - | + | + | + | 0.5740 | 2.266 | 0.1300 | 44.00 |
+ | + | - | + | + | 0.5770 | 2.264 | 0.3200 | 39.00 |
+ | + | + | - | + | 0.5870 | 2.324 | 0.4600 | 59.00 |
+ | + | + | + | - | 0.5820 | 2.300 | -1.160 | -7.000 |
- | - | + | - | + | 0.5840 | 2.269 | 1.040 | 43.00 |
- | - | - | + | + | 0.5790 | 2.245 | -0.6800 | 28.00 |
+ | + | - | - | + | 0.5860 | 2.310 | -2.820 | 40.00 |
0.5880a | 2.304a |
表1 不同磁构型锶铁氧体的晶格常数、相对能量和净磁矩
Table 1 Lattice parameters, relative total energies and magnetic moments of SrFe12O19 in different magnetic configurations
Spin direction of Fe ions in SrFe12O19 | a/nm | c/nm | Energy/(eV?(unit cell)-1) | Moment/(μB?(unit cell)-1) | ||||
---|---|---|---|---|---|---|---|---|
2a | 2b | 4f1 | 4f2 | 12k | ||||
+ | + | + | + | + | 0.5730 | 2.257 | 0 | 25.00 |
- | + | + | + | + | 0.5690 | 2.239 | 0.5900 | 48.00 |
+ | - | + | + | + | 0.5740 | 2.266 | 0.1300 | 44.00 |
+ | + | - | + | + | 0.5770 | 2.264 | 0.3200 | 39.00 |
+ | + | + | - | + | 0.5870 | 2.324 | 0.4600 | 59.00 |
+ | + | + | + | - | 0.5820 | 2.300 | -1.160 | -7.000 |
- | - | + | - | + | 0.5840 | 2.269 | 1.040 | 43.00 |
- | - | - | + | + | 0.5790 | 2.245 | -0.6800 | 28.00 |
+ | + | - | - | + | 0.5860 | 2.310 | -2.820 | 40.00 |
0.5880a | 2.304a |
Atom | Wyckoff site | Coordinates of atoms | Magnetic moment (GGA) | Magnetic moment (GGA+U) |
---|---|---|---|---|
Sr | 2d | 1/3, 2/3, 3/4 | 0 | 0 |
Fe(1) | 2a | 0, 0, 0 | 3.73 | 4.17 |
Fe(2) | 2b | 0, 0, 1/4 | 3.54 | 4.05 |
Fe(3) | 4f1 | 1/3, 2/3, 0.0272 | 3.43 | 4.05 |
Fe(4) | 4f2 | 1/3, 2/3, 0.1909 | 3.17 | 4.10 |
Fe(5) | 12k | 0.169, 0.338, 0.891 | 3.71 | 4.18 |
Total | – | – | 38.5 | 40.0 |
表2 GGA和GGA+U条件下锶铁氧体的Fe原子磁矩及晶胞总磁矩(μB)
Table 2 Magnetic moments (μB) of Fe atoms and total magnetic moments for SrFe12O19 unit cell from GGA and GGA+U
Atom | Wyckoff site | Coordinates of atoms | Magnetic moment (GGA) | Magnetic moment (GGA+U) |
---|---|---|---|---|
Sr | 2d | 1/3, 2/3, 3/4 | 0 | 0 |
Fe(1) | 2a | 0, 0, 0 | 3.73 | 4.17 |
Fe(2) | 2b | 0, 0, 1/4 | 3.54 | 4.05 |
Fe(3) | 4f1 | 1/3, 2/3, 0.0272 | 3.43 | 4.05 |
Fe(4) | 4f2 | 1/3, 2/3, 0.1909 | 3.17 | 4.10 |
Fe(5) | 12k | 0.169, 0.338, 0.891 | 3.71 | 4.18 |
Total | – | – | 38.5 | 40.0 |
图2 基于GGA计算的锶铁氧体的电子能带结构图(a)和总态密度、原子分态密度图(c), 基于GGA+U计算的锶铁氧体的电子能带结构图(b)和总态密度、原子分态密度图(d)
Fig. 2 Electronic band structure (a) and total density of states and atomic projected density (c) of states of SrFe12O19 from GGA, and electronic band structure (b), total density of states and atomic projected density (d) of states of SrFe12O19 from GGA+U
Substituted site | Esub/eV | mtot/mB | Dmtot |
---|---|---|---|
2a | -2.24 | 39.0 | -1.00 |
12k | -2.50 | 39.0 | -1.00 |
4f1 | -1.86 | 39.0 | -1.00 |
4f2 | -2.03 | 41.0 | 1.00 |
2b | -0.34 | 49.0 | 9.00 |
表3 单个Mn原子替代掺杂锶铁氧体不同位置Fe原子的替代能Esub、替代后的晶胞总磁矩mtot和磁矩的改变大小Dmtot
Table 3 Substitution energies of single Mn substituted strontium ferrite with Mn substituted Fe in five different sites, the total magnetic moments of substituted SrFe12-xMnxO19 and their changes relative to the pristine SrFe12O19
Substituted site | Esub/eV | mtot/mB | Dmtot |
---|---|---|---|
2a | -2.24 | 39.0 | -1.00 |
12k | -2.50 | 39.0 | -1.00 |
4f1 | -1.86 | 39.0 | -1.00 |
4f2 | -2.03 | 41.0 | 1.00 |
2b | -0.34 | 49.0 | 9.00 |
Configurations | Esub/eV | mtot/μB | Dmtot |
---|---|---|---|
[2a, 2a] | -2.88 | 38.0 | -2.00 |
[2a, 12k].1 | -4.02 | 38.0 | -2.00 |
[2a, 12k].2 | -3.98 | 38.0 | -2.00 |
[12k, 12k].1 | -3.90 | 38.0 | -2.00 |
[12k, 12k].2 | -3.90 | 38.0 | -2.00 |
[12k, 12k].3 | -3.97 | 38.0 | -2.00 |
[12k, 12k].4 | -3.90 | 38.0 | -2.00 |
[12k, 12k].5 | -3.95 | 38.0 | -2.00 |
[12k, 12k].6 | -3.99 | 38.0 | -2.00 |
[12k, 12k].7 | -4.00 | 38.0 | -2.00 |
表4 两个Mn原子替换掺杂情况下, SrFe12-xMnxO19(x=1.0)不同构型的取代能Esub, 晶胞磁矩mtot, 以及相对于未掺杂体系的晶胞磁矩变化量Dmtot
Table 4 Substitution energies Esub, total magnetic moments mtot and their changes Dmtot relative to that of the pristine SrFe12O19 for different configurations of SrFe12-xMnxO19(x=1.0) with two Mn atoms substituted
Configurations | Esub/eV | mtot/μB | Dmtot |
---|---|---|---|
[2a, 2a] | -2.88 | 38.0 | -2.00 |
[2a, 12k].1 | -4.02 | 38.0 | -2.00 |
[2a, 12k].2 | -3.98 | 38.0 | -2.00 |
[12k, 12k].1 | -3.90 | 38.0 | -2.00 |
[12k, 12k].2 | -3.90 | 38.0 | -2.00 |
[12k, 12k].3 | -3.97 | 38.0 | -2.00 |
[12k, 12k].4 | -3.90 | 38.0 | -2.00 |
[12k, 12k].5 | -3.95 | 38.0 | -2.00 |
[12k, 12k].6 | -3.99 | 38.0 | -2.00 |
[12k, 12k].7 | -4.00 | 38.0 | -2.00 |
Site | SFO | [12k] | [2a] | [2a, 12k].1 | ||||
---|---|---|---|---|---|---|---|---|
Atoms | M | Atoms | M | Atoms | M | Atoms | M | |
2d | 2Sr | -0.004 | 2Sr | -0.003 | 2Fe | -0.004 | 2Sr | -0.003 |
2a | 1Fe | 4.165 | 1Fe | 4.171 | 1Mn | 3.866 | 1Mn | 3.786 |
1Fe | 4.165 | 1Fe | 4.164 | 1Fe | 4.164 | 1Fe | 4.164 | |
2b | 2Fe | 8.108 | 2Fe | 8.135 | 2Fe | 8.132 | 2Fe | 8.137 |
4f1 | 4Fe | -16.180 | 4Fe | -16.181 | 4Fe | -16.172 | 4Fe | -16.188 |
4f2 | 4Fe | -16.414 | 4Fe | -16.435 | 4Fe | -16.414 | 4Fe | -16.445 |
12k | 1Fe | 4.181 | 1Mn | 3.798 | 1Fe | 4.179 | 1Mn | 3.800 |
11Fe | 45.983 | 11Fe | 45.958 | 11Fe | 45.955 | 11Fe | 45.950 | |
4e | 4O | 0.716 | 4O | 0.563 | 4O | 0.711 | 4O | 0.517 |
4f | 4O | 0.696 | 4O | 0.555 | 4O | 0.673 | 4O | 0.218 |
6h | 6O | 0.876 | 6O | 0.870 | 6O | 0.860 | 6O | 0.342 |
12k | `12O | 0.814 | 12O | 0.683 | 12O | 0.311 | 12O | 1.095 |
12k | 12O | 1.916 | 120 | 1.733 | 12O | 1.821 | 12O | 1.812 |
Sm | 39.02 | 38.07 | 38.08 | 37.09 | ||||
mtot | 40 | 39 | 39 | 38 |
表5 锶铁氧体SFO、单个Mn替换12k位置Fe的掺杂模型[12k]、单个Mn替换2a位置Fe的掺杂模型[2a], 以及两个Mn原子掺杂稳定构型[2a,12k].1的四种不同构型中原子磁矩分布
Table 5 Atomic magnetic moments in four different configurations: pristine strontium ferrite SFO, the [12k] configuration that SFO with one 12k Fe atom replaced by Mn, the [2a] configuration that SFO with one 2a Fe atom replaced by Mn, and the [2a,12k].1 structure that the stable configuration of SFO with two Fe atoms replaced by Mn
Site | SFO | [12k] | [2a] | [2a, 12k].1 | ||||
---|---|---|---|---|---|---|---|---|
Atoms | M | Atoms | M | Atoms | M | Atoms | M | |
2d | 2Sr | -0.004 | 2Sr | -0.003 | 2Fe | -0.004 | 2Sr | -0.003 |
2a | 1Fe | 4.165 | 1Fe | 4.171 | 1Mn | 3.866 | 1Mn | 3.786 |
1Fe | 4.165 | 1Fe | 4.164 | 1Fe | 4.164 | 1Fe | 4.164 | |
2b | 2Fe | 8.108 | 2Fe | 8.135 | 2Fe | 8.132 | 2Fe | 8.137 |
4f1 | 4Fe | -16.180 | 4Fe | -16.181 | 4Fe | -16.172 | 4Fe | -16.188 |
4f2 | 4Fe | -16.414 | 4Fe | -16.435 | 4Fe | -16.414 | 4Fe | -16.445 |
12k | 1Fe | 4.181 | 1Mn | 3.798 | 1Fe | 4.179 | 1Mn | 3.800 |
11Fe | 45.983 | 11Fe | 45.958 | 11Fe | 45.955 | 11Fe | 45.950 | |
4e | 4O | 0.716 | 4O | 0.563 | 4O | 0.711 | 4O | 0.517 |
4f | 4O | 0.696 | 4O | 0.555 | 4O | 0.673 | 4O | 0.218 |
6h | 6O | 0.876 | 6O | 0.870 | 6O | 0.860 | 6O | 0.342 |
12k | `12O | 0.814 | 12O | 0.683 | 12O | 0.311 | 12O | 1.095 |
12k | 12O | 1.916 | 120 | 1.733 | 12O | 1.821 | 12O | 1.812 |
Sm | 39.02 | 38.07 | 38.08 | 37.09 | ||||
mtot | 40 | 39 | 39 | 38 |
x | a/nm | c/nm | Volume/nm3 |
---|---|---|---|
0 | 0.5940 | 2.319 | 0.7063 |
0.5 | 0.5940 | 2.319 | 0.7063 |
1.0 | 0.5950 | 2.320 | 0.7071 |
表6 未掺杂和Mn掺杂锶铁氧体的晶格常数和体积
Table 6 Lattice constants and volumes of pristine and Mn-doped strontium ferrites
x | a/nm | c/nm | Volume/nm3 |
---|---|---|---|
0 | 0.5940 | 2.319 | 0.7063 |
0.5 | 0.5940 | 2.319 | 0.7063 |
1.0 | 0.5950 | 2.320 | 0.7071 |
图3 基于GGA+U计算的单个Mn原子掺杂SrFe12-xMnxO19 (x=0.5)的电子能带结构图(a)和总态密度、投影态密度图(c), 基于GGA+U计算的Mn掺杂锶铁氧体(x=1.0)的电子能带结构图(b)和总态密度、投影态密度图(d)
Fig. 3 Electronic band structure (a), total and projected density of states (c) of single Mn substituted SrFe12O19 (x=0.5), and electronic band structure (b), total and projected density of states (d) of Mn substituted SrFe12O19 (x=1.0) based on the GGA+U approach
[1] | ZHOU X, MA L, LIU T ,et al. Grystal structure and magnetic property of Si3N4/FePd/Si3N4 thin films.Journal of Inorganic Materials, 2018,33(8):909-915. |
[2] | MENG F B, MA X F, ZHANG W ,et al. Structure and magnetic property of Fe and spinel Co2MnO4.Journal of Inorganic Materials, 2017,32(6):609-614. |
[3] | XIAO L, CHEN Y, LIU Z ,et al. Growth, magnetic and electrical transport properties of La0.7Sr0.3MnO3 thin films on plzst ceramics.Journal of Inorganic Materials, 2017,32(3):326-330. |
[4] | ZHANG L, LIU HH, LIU LJ ,et al. Effects of La doping on CaB6 thin films prepared by DC magnetron sputtering.Journal of Inorganic Materials, 2017,32(5):555-560. |
[5] | ZHAO X Y, MAN P W, XIE T ,et al. Crystal growth and characterization of the rare-earth orthoferrite Sm0.8Tb0.2FeO3 single crystal.Journal of Inorganic Materials, 2016,31(9):1004-1008. |
[6] | SEEMA V, JOY P A, KHOLLAM Y B ,et al. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method.Materials Letters, 2004,58(6):1092-1095. |
[7] | CHEN D, LIU Y, LI Y, , ,et al.Microstructure. Microstructure and magnetic properties of Al-doped barium ferrite with sodium citrate as chelate agent. Journal of Magnetism and Magnetic Materials, 2013,337- 338:65-69. |
[8] | WANG H W, KUNG S C . Crystallization of nanosized Ni-Zn ferrites powders prepared by hydrothermal method. Journal of Magnetism and Magnetic Materials, 2004,270(1/2):230-236. |
[9] | ALMESSIERE M A, SLIMANI Y, BAYKAL A ,et al. Structural and magnetic properties of Ce-doped strontium hexaferrite.Ceramics International, 2018,44:9000-9008. |
[10] | SEIFERT D ,TÖPFER J, LANGENHORST F ,et al. Synthesis and magnetic properties of La-substituted M-type Sr hexaferrites.Journal of Magnetism and Magnetic Materials, 2009,321(24):4045-4051. |
[11] | WANG J F, PONTON C B , GRÖSSINGER R, ,et al. A study of La-substituted strontium hexaferrite by hydrothermal systhesis.Journal of Alloys and Compounds, 2004,369(1/2):170-177. |
[12] | WANG J F, PONTON C B, HARRIS I R ,et al. A study of the magnetic properties of hydrothermally synthesisted Sr hexaferrite with Sm substitution.Journal of Magnetism and Magnetic Materials, 2001,234(2):233-240. |
[13] | WANG J F, PONTON C B, HARRIS I R ,et al. A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis.Journal of Alloys and Compounds, 2015,403(1/2):104-109. |
[14] | WANG J F, PONTON C B, HARRIS I R ,et al. A study of Nd-substituted Sr hexaferrite prepared by hydrothermal synthesis.IEEE Transactions on Magnetic, 2002,38(5):2928-2930. |
[15] | ASHIQ M N, IQBAL M J, GUL I H ,et al. Structural, magnetic and dielectric properties of Zr-Cd substituted strontium hexaferrite (SrFe12O19).Journal of Alloys and Compounds, 2009,487(1/2):341-345. |
[16] | ASHIQ M N, IQBAL M J , NAJAM-UL-HQ M,et al. Synthesis, magnetic and dielectric properties of Er-Ni doped Sr-hexaferrite nanomaterials for applications in high density recording media and microwave divices.Journal of Magnetism and Magnetic Materials, 2012,324(1):15-19. |
[17] | DAVOODI A, HASHEMI B . Magnetic properties of Sn-Mg substituted strontium hexaferrite nanoparticles synthesized via coprecipitation method.Journal of Alloys and Compounds, 2011,509(19):5893-5896. |
[18] | CHEN W, WU W W, ZHOU C ,et al. Structural and magnetic properties evolution Co-Nd substituted M-type hexagonal strontium ferrites synthesized by ball-milling-assisted ceramic materials.Journal of Electronic Materials, 2018,47(3):2110-2119. |
[19] | EBRAHIMI F, ASHRAFIZADEH F . Tuning the ferromagnetic resonance by doping strontium hexaferrite nanopowders. Journal of Sol-Gel Science and Technology, 2018,85(3):621-628. |
[20] | VIVEK D, CHANDANI N ,NANDADASA,et al. Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite.Journal of Applied Physics, 2015,17:243904-243912. |
[21] | LIYANAGE L S I, KIM S, HONG Y K,et al. Theory of magnetic enhancement in strontium hexaferrite through Zn-Sn pair substitution.Journal of Magnetism and Magnetic Materials, 2013(348):75-81. |
[22] | KRESSE G , FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Physics Review B, 1996,54(16):11169-11186. |
[23] | KRESSE G ,FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Computation Material Science, 1996,6:15-50. |
[24] | PERDEW J P, BURKE K, EMZERHOF M . Generalized gradient approximation made simple. Physics Review Letter, 1996,77:3865-3868. |
[25] | BLÖCHL P E . Projector augmented-wave method. Physics Review B, 1994,50:17953-17979. |
[26] | KRESSE G, JOUBERT D . From ultrasoft pseudopotentials to the projector augmented-wave method. Physics Review B, 1999,59:1758-1775. |
[27] | MONKHORST H, PACK J . Special points for Brillouin-zone interations. Physics Review B, 1976,13:5188-5192. |
[28] | LIYANAGE L S I, KIM S, HONG Y K ,et al. Theory of magnetic enhancement in strontium hexaferrite through Zn-Sn pair substitution.Journal of Magnetism and Magnetic Materials, 2013,348:75-81. |
[29] | HUANG L H, ZHU Q S, GE W , et al.Oxygen-vacancy formation in LaMO3( M = Ti, V, Cr, Mn, Fe, Co, Ni) calculated at both GGA and GGA + U levels.Computational Materials Science, 2011,50:1800-1805. |
[30] | SAHU B R, BANERJEE S K . Density-functional study of bulk silicon lightly doped with manganese. Physical Review B, 2008,77(15):155203-155209 |
[31] | GORTER E W . Saturation magnetization of some ferromagnetic oxides with hexagonal crystal structures. Proc. IEEE-Part B: Radio and Electron. Eng, 1957,104:255-260. |
[32] | KIMURA K, OHGAKI M, TANAKA K ,et al. Study of the bipyramidal site in magnetoplumbite-like compounds SrM12O19(M=Al, Fe, Ga).Journal Solid State Chemistry, 1990,87:186-194. |
[33] | IQBAL M J, FAROOQ S . Impact of Pr-Ni substitution on the electrical and magnetic properties of chemically derived nanosized strontium-barium hexaferrites. Journal of Alloys and Compounds, 2010,505:560-567. |
[1] | 吴玉豪, 彭仁赐, 程春玉, 杨丽, 周益春. HfxTa1-xC体系力学性能及熔化曲线的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 761-768. |
[2] | 靳宇翔, 宋二红, 朱永福. 3d过渡金属单原子掺杂石墨烯缺陷电催化还原CO2的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 845-852. |
[3] | 王伟华, 张磊宁, 丁峰, 代兵, 韩杰才, 朱嘉琦, 贾怡, 杨宇. 铱衬底上金刚石外延形核与生长: 第一性原理计算[J]. 无机材料学报, 2024, 39(4): 416-422. |
[4] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[5] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[6] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[7] | 吴晓维, 张涵, 曾彪, 明辰, 孙宜阳. 杂化泛函HSE和PBE0计算CsPbI3缺陷性质的比较研究[J]. 无机材料学报, 2023, 38(9): 1110-1116. |
[8] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
[9] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[10] | 文志勤, 黄彬荣, 卢涛仪, 邹正光. 压力对PbTiO3结构和热物性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(7): 787-794. |
[11] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[12] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[13] | 袁罡, 马新国, 贺华, 邓水全, 段汪洋, 程正旺, 邹维. 平面应变对二维单层MoSi2N4能带结构和光电性质的影响[J]. 无机材料学报, 2022, 37(5): 527-533. |
[14] | 冯清影, 刘东, 张莹, 冯浩, 李强. 太阳能驱动的两步热化学循环二氧化碳裂解反应活性材料的热力学与第一性原理评价[J]. 无机材料学报, 2022, 37(2): 223-229. |
[15] | 张弦, 张策, 姜文君, 冯德强, 姚伟. 四元BiMnVO5的合成、电子结构与可见光催化性能研究[J]. 无机材料学报, 2022, 37(1): 58-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||