| [1] | WANG Z L . ZnO nanowire and nanobelt platform for nano- technology. Mat. Sci. Eng. R, 2009,64(3):33-71. | 
																													
																						| [2] | MANEKKATHODI A, LU M Y, WANG C W , et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater., 2010,22(22):4059-4063. | 
																													
																						| [3] | VAYSSIERES L . Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater., 2003,15(5):464-466. | 
																													
																						| [4] | LIANG J R, ZHANG Y, YANG R ,et al. Room-temperature NH3 gas sensing property of VO2(B)/ZnO hierarchical heterogeneous composite with nanorod structure. J. Inorg. Mater., 2018,33(12):1323-1329. | 
																													
																						| [5] | NING Y, ZHANG Z M, TENG F , et al. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small, 2018,14(13):1703754. | 
																													
																						| [6] | HU K, TENG F, ZHENG L X , et al. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev., 2017,11(1):1600257. | 
																													
																						| [7] | TSAI D S, LIN C A, LIEN W C , et al. Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano, 2011,5(10):7748-7753. | 
																													
																						| [8] | YIN Z Y, WANG Z, DU Y P , et al. Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine- doped tin oxide for water splitting. Adv. Mater., 2012,24(39):5374-5378. | 
																													
																						| [9] | NIE B, HU J G, LUO L B , et al. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small, 2013,9(17):2872-2879. | 
																													
																						| [10] | HATCH S M, BRISCOE J, DUNN S . A self-powered ZnO nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater., 2013,25(6):867-871. | 
																													
																						| [11] | LI S B, XU J P, SHI S B , et al. UV photoresponse properties of ZnO nanorods arrays deposited with CuSCN by SILAR method. Chem. Phys. Lett., 2015,620:50-55. | 
																													
																						| [12] | BIE Y Q, LIAO Z M, ZHANG H Z , et al. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater., 2011,23(5):649-653. | 
																													
																						| [13] | LEE T I, LEE S H, KIM Y D , et al. Playing with dimensions: rational design for heteroepitaxial p-n junctions. Nano Lett., 2011,12(1):68-76. | 
																													
																						| [14] | FORTICAUX A, HACIALIOGLU S, DEGRAVE J P ,et al. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes. ACS Nano, 2013,7(9):8224-8232. | 
																													
																						| [15] | DEKKERS M, RIJNDERS G, BLANK D H . ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d 6- transition metal oxide. Appl. Phys. Lett., 2007,90(2):021903. | 
																													
																						| [16] | KIM S, CIANFRONE J A, SADIK P , et al. Room temperature deposited oxide p-n junction using p-type zinc-cobalt-oxide. J. Appl. Phys., 2010,107(10):103538. | 
																													
																						| [17] | KIM H J, SONG I C, SIM J H , et al. Structural and transport properties of cubic spinel ZnCo2O4 thin films grown by reactive magnetron sputtering. Solid State Commun., 2004,129(10):627-630. | 
																													
																						| [18] | QIU Y C, YANG S H, DENG H , et al. A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J. Mater. Chem., 2010,20(21):4439-4444. | 
																													
																						| [19] | SHARMA Y, SHARMA N, SUBBA RAO G V, , et al. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater., 2007,17(15):2855-2861. | 
																													
																						| [20] | WEI X H, CHEN D H, TANG W J . Preparation and characterization of the spinel oxide ZnCo2O4 obtained by Sol-Gel method. Mater. Chem. Phys., 2007,103(1):54-58. | 
																													
																						| [21] | HU L F, MA R Z, OZAWA T C , et al. Oriented films of layered rare-earth hydroxide crystallites self-assembled at the hexane/water interface. Chem. Commun., 2008,40(40):4897-4899. | 
																													
																						| [22] | HU L F, MA R Z, OZAWA T C ,et al. Oriented monolayer film of Gd2O3:0.05Eu crystallites: quasi-topotactic transformation of the hydroxide film and drastic enhancement of photoluminescence properties. Angew. Chem. Int. Ed., 2009,48(21):3846-3849. | 
																													
																						| [23] | BAE J, SONG M K, PARK Y J , et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed., 2011,50(7):1683-1687. | 
																													
																						| [24] | XU S, ADIGA N, BA S , et al. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano, 2009,3(7):1803-1812. | 
																													
																						| [25] | LADANOV M, ALGARIN-AMARIS P, VILLALBA P ,et al. Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires. J. Phys. Chem. Solids, 2013,74(11):1578-1588. | 
																													
																						| [26] | SONG J, LIM S . Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C, 2007,111(2):596-600. | 
																													
																						| [27] | XU S, WANG Z L . One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res., 2011,4(11):1013-1098. | 
																													
																						| [28] | BIELINSKI A R, KAZYAK E, SCHLEPÜTZ C M , et al. Hierarchical ZnO nanowire growth with tunable orientations on versatile substrates using atomic layer deposition seeding. Chem. Mater., 2015,27(13):4799-4807. | 
																													
																						| [29] | XU X J, CHEN J X, CAI S , et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater., 2018,30(43):1803165. | 
																													
																						| [30] | ZHAO B, WANG F, CHEN H Y , et al. An ultrahigh responsivity (9.7 mA·W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater., 2017,27(17):1700264. |