无机材料学报 ›› 2017, Vol. 32 ›› Issue (2): 113-121.DOI: 10.15541/jim20160255
• • 下一篇
李 想1,2, 葛武杰1,2, 王 昊1,2, 瞿美臻1
收稿日期:
2016-04-13
修回日期:
2016-06-06
出版日期:
2017-02-20
网络出版日期:
2017-01-13
作者简介:
李 想(1990–), 男, 博士研究生. E-mail: bill90@126.com
基金资助:
LI Xiang1,2, GE Wu-Jie1,2, WANG Hao1,2, QU Mei-Zhen1
Received:
2016-04-13
Revised:
2016-06-06
Published:
2017-02-20
Online:
2017-01-13
About author:
LI Xiang. E-mail: bill90@126.com
摘要:
高镍系三元层状氧化物正极材料因其高比容量、低廉的价格以及较好的环境友好性而受到广泛关注, 但是其固有的一些缺点, 如循环过程中结构稳定性差、高温稳定性差以及储存性能差等极大地限制了其在各领域的广泛应用。本文着重总结并讨论近年来对高镍系三元层状氧化物正极材料循环过程容量衰减机理的研究进展, 并对高镍系三元层状氧化物正极材料的进一步改性作了简要的展望。
中图分类号:
李 想, 葛武杰, 王 昊, 瞿美臻. 高镍系三元层状氧化物正极材料容量衰减机理的研究进展[J]. 无机材料学报, 2017, 32(2): 113-121.
LI Xiang, GE Wu-Jie, WANG Hao, QU Mei-Zhen. Research Progress on the Capacity Fading Mechanisms of High-Nickel Ternary Layered Oxide Cathode Materials[J]. Journal of Inorganic Materials, 2017, 32(2): 113-121.
图3 Li层空间示意图 [22]
Fig. 3 Schematic representation of the inter-slab space[22](a) In the LixNi1+zO2 system, the oxidation of the Ni2+ ions during the cycling induces a local collapse of the inter-slab space which makes lithium diffusion and re-intercalation difficult; (b) The LixNi1-yMgO2 system, the electrochemically inactive Mg2+ ions do not hinder lithium diffusion since their size is very close to that of the Li+ ion
图6 (a)经过锂化的正极颗粒界面透射电镜图显示单个一次颗粒中成排的纳米结构, (b)单个纳米片的电子衍射图像显示晶胞的c轴垂直于片的基本面[43]
Fig. 6 (a) TEM image of cross-section of lithiated particle showing the aligned nanostructure inside a single particle, (b) Electron diffraction pattern on a single nanoplate showing that the c axis (in R3?m space) is perpendicular to the basal plane of the plate[43]
图7 5 μm×5 μm区域内LiNi0.8Co0.15Al0.05O2表面导电性(右边)和形貌(左边)的电流响应原子力显微镜图(接触电压1.0 V) [45]
Fig. 7 CSAFM images of surface conductance (right-hand panel) and topography (left-hand panel) of a 5×5 μm region of the composite LiNi0.8Co0.15Al0.05O2 cathode surface at 1.0 V tip-sample voltage difference[45](a) Virgin cell; (b) Cathode from the cell which lost 34% of power
[1] | LIU W, OH P, LIU X E, Nickel-Rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.Angewandte Chemie International Edition, 2015, 54: 4440-4457. |
[2] | YUAN RONG-ZHONG, QU MEI-ZHEN, YU ZUO-LONG.Thermal stability of nickel-based lithium transition metal oxides as the cathode materials for lithium-ion batteries. Journal of Inorganic Materials, 2003, 18(5): 973-979. |
[3] | LI X L, KANG F Y, SHEN W C,et al. Improvement of structural stability and electrochemical activity of a cathode material LiNi0.7Co0.3O2 by chlorine doping. Electrochimica Acta, 2007, 53(4): 1761-1765. |
[4] | WOO S W, MYUNG S T, BANG H, et al. Improvement of electrochemical and thermal properties of LiNi0.8Co0.1Mn0.1O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochimica Acta, 2009, 54(15): 3851-3856. |
[5] | MUTO S, TATSUMI K, KOJIMA Y,et al. Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods. Journal of Power Sources, 2012, 205: 449-455. |
[6] | LIU W M, HU G R, DU K,et al. Surface coating of LiNi0.8Co0.15Al0.05O2 with LiCoO2 by a molten salt method. Surface and Coating Technology, 2013, 216: 267-272. |
[7] | XIONG X H, WANG Z X, YAN G C, et al. Role of V2O5 coating on LiNiO2-based materials for lithium ion battery. Journal of Power Sources, 2014, 245: 183-193. |
[8] | HUANG B, LI X H, WANG Z X,et al. Enhanced electrochemical performance in LiNi0.8Co0.15Al0.05O2 cathode material: Resulting from Mn-surface-modification using a facile oxidizing-coating method. Materials Letters, 2014, 115: 49-52. |
[9] | XIA SHU-BIAO, ZHANG YING-JIE, DONG PENG, et al. CeO2 surface modification to improve cycle and storage performance on lithium ion battery cathode material LiNi0.8Co0.15Al0.05O2. Chin. Journal of Inorganic Chemistry, 2014, 30(3): 529-535. |
[10] | JU S H, KANG I S, LEE Y S,et al. Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating. ACS Applied Materials and Interfaces, 2014, 6(4): 2546-2552. |
[11] | LEE S H, YOON C S, KHALIL A,et al. Improvement of long-term cycling performance of Li(Ni0.8Co0.15Al0.05)O2 by AlF3 coating . Journal of Power Sources, 2013, 234: 201-207. |
[12] | YANG H Z, LIU P X, CHEN Q L,et al. Fabrication and characteristics of high-capacity LiNi0.8Co0.15Al0.05O2 with monodisperse yolk-shell spherical precursors by a facile method . RSC Advances, 2014, 4: 35522-35527. |
[13] | WU N T, WU H, YUAN W,et al. Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3: 13648-13652. |
[14] | YE NAI-QING, LIU CHANG-JIU, SHEN SHANG-YUE.Drawbacks and improve ways of LINiO2 as a cathode material for lithium ion batteries.Journal of Inorganic Materials, 2004, 19(6): 1217-1224. |
[15] | LIN F, DENNIS N, LI Y Y,et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries. Nature Energy, 2016, 1: 15004. |
[16] | MAKIMURA Y, ZHENG S J, IKUHARA Y C,et al. Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy. Journal of The Electrochemical Society, 2012, 159(7): A1070-A1073. |
[17] | CHO Y H, OH P, CHO J.A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer.Nano Letters, 2013, 13: 1145-1152. |
[18] | KIM H J, KIM M G, JEONG H Y,et al. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Letters, 2015, 15: 2111-2119. |
[19] | KONDO H, TAKEUCHI Y, SASAKI T,et al. Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance. Journal of Power Sources. 2007, 174(2): 1131-1136. |
[20] | SATHIYAMOORTHI R, SHAKKTHIVEL P, RAMALAKSHMI S,et al. Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells. Journal of Power Sources. 2007, 171(2): 922-927. |
[21] | HUANG B, LI X, WANG Z,et al. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceramics International, 2014, 40: 13223-13230. |
[22] | POUILLERIE C, CROGUENNEC L, BIENSAN P,et al. Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries. Journal of The Electrochemical Society, 2000, 147: 2061-2067. |
[23] | WU F, TIAN J, SU Y F,et al. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl. Mater. Interfaces, 2015, 7: 7702-7708. |
[24] | CHEN Z Z, YUAN X J, WEN M S,et al. Preparation of LiNi0.80Co0.15Al0.05O2 cathode material via Li-rich method. Energy Storage Science and Technology, 2014, 3(6): 620-623. |
[25] | BI Y J, YANG W C, DU R,et al. Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery. Journal of Power Sources, 2015, 283: 211-218. |
[26] | LI X, XIE Z W, LIU W J,et al. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochimica Acta, 2015, 174: 1122-1130. |
[27] | ZHUANG G R V, CHEN G Y, SHIM J,et al. Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power. Journal of Power Sources, 2004, 134(2): 293-297. |
[28] | LIU W M, HU G R, DU K,et al. Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2. Journal of Power Sources, 2013, 230: 201-206. |
[29] | ZHU L, LIU Y, WU W Y,et al. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3: 15156-15162. |
[30] | XIONG X H, WANG Z X, YUE P,et al. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. Journal of Power Sources, 2013, 222: 318-325. |
[31] | ZHENG X B, LI X H, WANG Z X,et al. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochimica Acta, 2016, 191: 832. |
[32] | BI Y J, WANG T, LIU M,et al. Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Advances, 2016, 6: 19233-19237. |
[33] | DOKKO K, NISHIZAWA M, HORIKOSHI S,et al. In situ observation of LiNiO2 single-particle fracture during Li-ion extraction and insertion. Electrochemical and Solid-State Letters, 2000, 3(3): 125-127. |
[34] | ROBERT R, BÜNZLI C,BERG E J,et al.Activation mechanism of LiNi0.8Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X ray diffraction analyses. Chemistry of Materials, 2015, 27: 526-536. |
[35] | ITOU Y, UKYO Y.Performance of LiNiCoO2 materials for advanced lithium-ion batteries.Journal of Power Sources, 2005, 146(1/2): 39-44. |
[36] | ZHENG S J, HUANG R, MAKIMURA Y,et al. Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle .Journal of The Electrochemical Society, 2011, 158(4): A357-A362. |
[37] | WATANABE S, KINOSHIRA M, HASOKAWA T,et al. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). Journal of Power Sources, 2014, 258: 210-217. |
[38] | MAKIMURA Y, ZHENG S J, IKUHARA Y,et al. Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy. Journal of The Electrochemical Society, 2012, 159(7): A1070-A1073. |
[39] | NOH H J, YOUN S, YOON C S,et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources, 2013, 233: 121-130. |
[40] | OHZUKU T, UEDA A, NAGAYAMA M.Electrochemistry and structural chemistry of LiNiO2 (R-3m) for 4 V secondary lithium cells.Journal of The Electrochemical Society, 1993, 140: 1862-1870. |
[41] | YANG X Q, SUN X, MCBREEN J.Structural changes and thermal stability: In situ X-ray diffraction studies of a new cathode material LiMg0.125Ti0.125Ni0.75O2.Electrochemical Communications, 2000, 2: 733-737. |
[42] | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012, 11: 942-947. |
[43] | LEE E J, CHEN Z H, NOH H J,et al. Development of microstrain in aged lithium transition metal oxides. Nano Letters, 2014, 14: 4873-4880. |
[44] | YANG J, XIA Y Y.Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3.ACS Applied Materials and Interfaces, 2016, 8(2): 1297-1308. |
[45] | KOSTECKI R, MCLARNON F.Local-probe studies of degradation of composite LiNi0.8Co0.15Al0.05O2 cathodes in high-power Lithium-ion cells.Electrochemical and Solid-State Letters, 2004, 7(10): A380-A383. |
[46] | KOSTECKI R, MCLARNON F.Degradation of LiNi0.8Co0.2O2 cathode surfaces in high-power lithium-ion batteries.Electrochemical and Solid-State Letters, 2002, 5(7): A164-A166. |
[47] | KOSTECKI R, LEI J L, MCLARNON F,et al. Diagnostic evaluation of detrimental phenomena in high-power lithium-ion batteries. Journal of The Electrochemical Society, 2006, 153(4): A669-A672. |
[48] | LEI J L, MCLARNON F, KOSTECKI R,et al. In situ Raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-ion battery composite cathode. Journal of Physical Chemistry B, 2005, 109(2): 952-957. |
[49] | SASAKI T, NONAKA T, OKA H,et al. Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries I. Analysis by electrochemical and spectroscopic examination. Journal of The Electrochemical Society, 2009, 156(4): A289-A293. |
[50] | MUTO S, SASANO Y, TATSUMI K,et al. Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries II. Diagnostic analysis by electron microscopy and spectroscopy. Journal of The Electrochemical Society, 2009, 156(5): A371-A377. |
[51] | KOJIMA Y, MUTO S, TATSUMI K,et al. Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy. Journal of Power Sources, 2011, 196: 7721-7727. |
[52] | BAK S M, NAM K W, CHANG W Y,et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chemistry of Materials, 2013, 25: 337-351. |
[53] | WU L J, NAM K W, WANG X J,et al. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chemistry of Materials, 2011, 23: 3953-3960. |
[54] | SHIM J, KOSTECKI R, RICHARDSON T,et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. Journal of Power Sources, 2002, 112: 222-230. |
[1] | 孔国强, 冷明哲, 周战荣, 夏池, 沈晓芳. Sb掺杂O3型Na0.9Ni0.5Mn0.3Ti0.2O2钠离子电池正极材料[J]. 无机材料学报, 2023, 38(6): 656-662. |
[2] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[3] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[4] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[5] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[6] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[7] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[8] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[9] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[10] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[11] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[14] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||