无机材料学报 ›› 2015, Vol. 30 ›› Issue (12): 1233-1242.DOI: 10.15541/jim20150244 CSTR: 32189.14.10.15541/jim20150244
• • 下一篇
陈 婷1, 2, 江 莞2, 3, 江伟辉1, 2, 刘健敏2, 张筱君1, 谢志翔1
收稿日期:
2015-05-21
修回日期:
2015-07-05
出版日期:
2015-12-20
网络出版日期:
2015-11-24
作者简介:
陈 婷(1984–),女,讲师. E-mail: chenting@jci.edu.cn
基金资助:
CHEN Ting1, 2, JIANG Wan2, 3, JIANG Wei-Hui1, 2, LIU Jian-Min2, ZHANG Xiao-Jun1, XIE Zhi-Xiang1
Received:
2015-05-21
Revised:
2015-07-05
Published:
2015-12-20
Online:
2015-11-24
About author:
CHEN Ting. E-mail: chenting@jci.edu.cn
Supported by:
摘要:
双相混合导体膜在高温下能够同时传导氧离子和电子, 具有稳定性好、膨胀系数低、机械强度高和成分可调等优点, 可以作为反应器应用于甲烷部分氧化制合成气(POM)。但双相混合导体膜的透氧率较低, 成为亟待解决的问题。本文从透氧机理入手详细阐述了氧渗透过程的影响因素。在此基础上综述了目前提高双相混合导体膜透氧率的措施, 包括了采用混合导体作为电子导电相、降低电子导电相形成连续渗流网络的体积比阀值和减小双相晶粒尺寸, 以及宏观上制备出不对称膜、管状膜和中空纤维膜进一步降低膜厚、增大表面积以提高透氧率。最后指出双相混合导体膜在未来需要重点解决的一些问题。
中图分类号:
陈 婷, 江 莞, 江伟辉, 刘健敏, 张筱君, 谢志翔. 双相混合导体膜氧渗透性能改善的研究进展[J]. 无机材料学报, 2015, 30(12): 1233-1242.
CHEN Ting, JIANG Wan, JIANG Wei-Hui, LIU Jian-Min, ZHANG Xiao-Jun, XIE Zhi-Xiang. Research Progress in Improvement of Oxygen Permeation Properties for Dual-phase Mixed Conducting Membranes[J]. Journal of Inorganic Materials, 2015, 30(12): 1233-1242.
图1 (a)氧离子-混合导体和(b)氧离子-电子导体的透氧示意图[21]
Fig. 1 Schematic illustration of oxygen transport in ionic- mixed conductor composite membrane (a) and ionic-electronic conductor composite membrane (b)[21]
图2 (a)包覆法制备SDC-PBCO双相膜示意图, (b)SDC@PBCO粉体的SEM和EDX图谱和(c)双相膜的BSEM图谱[43]
Fig. 2 (a) Schematic illustration of the synthesis of SDC-PBCO membrane via coating strategy, (b) SEM image and EDX spectra of SDC@PBCO powders, and (c) BSEM image of the membrane surface[43]
图3 (a) 固相法和(b)一步合成法制备的GDC-NFO双相膜的EDXS照片[48]
Fig. 3 EDXS images of GDC-NFO dual-phase membranes prepared by (a) solid state method and (b) one-pot method[48]
图5 相转化流延(a)和添加造孔剂流延(b)制备的YSZ-LSM不对称膜的SEM照片[63]
Fig. 5 SEM images of YSZ-LSM assymatric dual-phase membranes prepared by (a) phase-inversion tape-casting and (b) tape-casting with pore former addition[63]
[1] | PENA-MARTINEZ J, MARRERO-LOPEZ D, RUIZ-MORALES J C, et al. On Ba0.5Sr0.5Co1-yFeyO3-δ (y=0.1-0.9) oxides as cathode materials for La0.9Sr0.1Ga0.8Mg0.2O2.85 based IT-SOFCs.Int. J. Hydrogen Energy, 2009, 34(23): 9486-9495. |
[2] | TERAOKA Y, ZHUANG H M, FURUKAWA S, et al.Oxygen permeation through perovskite-type oxides.Chem. Lett., 1985, 14: 1743-1746. |
[3] | TAI L W, NASRALLAH M M, ANDERSON H U, et al.Structure and electrical properties of La1-xSrxCo1-yFeyO3. II. The system La1-xSrxCo0.2Fe0.8O3.Solid State Ionics, 1995, 76(3/4): 273-283. |
[4] | PEI S, KLEEFISCH M S, KOBYLINSKI T P, et al.Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas.Catal. Lett., 1994, 30(1/4): 201-212. |
[5] | KRUIDHOF H, BOUWMEESTER H J M, DOOM R H E V, et al. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics, 1993, 63-65: 816-822. |
[6] | CHEN C S, LIU W, XIE S, et al.A novel intermediate-temperature oxygen-permeable membrane based on the high-Tc superconductor Bi2Sr2CaCu2O8.Adv. Mater., 2000, 12(15): 1132-1134. |
[7] | THOROGOOD R M, SRINIVASAN R, YEE T F, et al. Composite Mixed Conductor Membranes for Producing Oxygen. United States Patent, 5240480. 1993. |
[8] | WAGNER C, SCHOTTKY W.Theory of arranged mixed phases.Z. Physik. Chem. B, 1930, 11(1): 163-210. |
[9] | KOBAYASHI K, NISHIOKA M, SATO K, et al.Synthesis and oxygen permeation properties of 75mol% Ce0.75Nd0.25O1.875-25mol% Nd1.8Ce0.2CuO4 composite.J. Solid. State. Electrochem., 2006, 10(8): 629-634. |
[10] | DOU S, MASSON C R, PACEY P D.Mechanism of oxygen permeation through lime-stabilized zirconia.J. Electrochem. Soc., 1985, 132(8): 1843-1849. |
[11] | ZHU X F, LIU H Y, CONG Y, et al.Permeation model and experimental investigation of mixed conducting membranes.AIChE J., 2012, 58(6): 1744-1754. |
[12] | YOON J S, YOON M Y, LEE E J, et al.Influence of Ce0.9Gd0.1O2-δ particles on microstructure and oxygen permeability of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ composite membrane.Solid State Ionics, 2010, 181(29-30): 1387-1393. |
[13] | LIA S G, JIN W Q, XU N P, et al.Mechanical strength, and oxygen and electronic transport properties of SrCo0.4Fe0.6O3-δ-YSZ membranes.J. Membr. Sci., 2001, 186(2): 195-204. |
[14] | MAZANEC T J, CABLE T L, FRYE J G. Electrocatalytic cells for chemical reaction. Solid State Ionics, 1992, 53-56: 111-118. |
[15] | CHEN C S, BURGGRAAF A J.Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes.J. Appl. Electrochem., 1999, 29(3): 355-360. |
[16] | NITHYANANTHAM T, BISWAS S, NAGENDRA N, et al.Studies on mechanical behavior of LSFT-CGO dual-phase membranes at elevated temperatures in ambient air and slightly reducing environments.Ceram. Int., 2014, 40(6): 7783-7790. |
[17] | YI J X, ZUO Y B, LIU W, et al.Oxygen permeation through a Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ dual-phase composite membrane.J. Membr. Sci., 2006, 280(1/2): 849-855. |
[18] | WANG B, ZHAN M C, ZHU D C, et al.Oxygen permeation and stability of Zr0.8Y0.2O0.9-La0.8Sr0.2CrO3-δ dual-phase composite.J. Solid State Electrochem., 2006, 10(8): 625-628. |
[19] | ZHU X F, YANG W S.Mixed conductor oxygen permeable membrane reactors. Chin J. Catal., 2009, 30(8): 801-816. |
[20] | ZHU X F, YANG W S.Composite membrane based on ionic conductor and mixed conductor for oxygen permeation.AIChE J., 2008, 54(3): 665-672. |
[21] | BALAGUER M, FAYOS-GARCIA J, SOLIS C, et al.Fast oxygen separation through SO2- and CO2-stable dual-phase membrane based on NiFe2O4-Ce0.8Tb0.2O2-δ.Chem. Mater., 2013, 25(24): 4986-4993. |
[22] | SAMSON A J, SOGAARD M, HENDRIKSEN P V.(Ce, Gd)O2-δ- based dual phase membranes for oxygen separation.J. Membr. Sci., 2014, 470: 178-188. |
[23] | ZHU X F, LI M R, LIU H Y. Design and experimental investigation of oxide ceramic dual-phase membranes. J. Membr. Sci., 2012, 394-395: 120-130. |
[24] | LI H B, LIU Y, ZHU X F, et al.Oxygen permeation through Ca-contained dual-phase membranes for oxyfuel CO2 capture.Sep. Purif. Technol., 2013, 114: 31-37. |
[25] | KHARTON V V, KOVALEVSKY A V, VISKUP A P, et al.Oxygen transport in Ce0.8Gd0.2O2-δ-based composite membranes.Solid State Ionics, 2003, 160(3-4): 247-258. |
[26] | XUE J, ZHENG Q, WEI Y Y, et al.Dual phase composite oxide of Ce0.8Gd0.2O2-δ-Ba0.5Sr0.5Fe0.2Co0.8O3-δ with excellent oxygen permeation.Ind. Eng. Chem. Res., 2012, 51(12): 4703-4709. |
[27] | XUE J, LIAO Q, WEI Y Y, et al.A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2-δ-40Ba0.5Sr0.5Fe0.2Co0.8O3-δ dual phase membrane.J. Membr. Sci., 2013, 443: 124-130. |
[28] | KIM S K, SHIN M J, RUFNER J, et al.Sr0.95Fe0.5Co0.5O3-δ-Ce0.9Gd0.1O2-δ dual-phase membrane: oxygen permeability, phase stability, and chemical compatibility.J. Membr. Sci., 2014, 462: 153-159. |
[29] | CHEN C S, KRUIDHOF H, BOUWMEESTER H J M, et al. Oxygen permeation through oxygen ion oxide-noble metal dual phase composites. Solid State Ionics, 1996, 86-88(1): 569-572. |
[30] | CHEN T, ZHAO H L, XU N S, et al.Synthesis and oxygen permeation properties of a Ce0.8Sm0.2O2-δ-LaBaCo2O5+δ dual-phase composite membrane.J. Membr. Sci., 2011, 370(1/2): 158-165. |
[31] | CHEN T, ZHAO H L, XIE Z X, et al.Electrical conductivity and oxygen permeability of Ce0.8Sm0.2O2-δ-PrBaCo2O5+δ dual-phase composites.Int. J. Hydrogen Energy, 2012, 37(6): 5277-5285. |
[32] | CHEN T, ZHAO H L, XIE Z X, et al.Oxygen permeability of Ce0.8Sm0.2O2-δ-LnBaCo2O5+δ (Ln=La, Nd, Sm, and Y) dual- phase ceramic membranes.Ionics, 2015, 21(6): 1683-1692. |
[33] | CHOI M B, JEON S Y, HWANG H J, et al.Composite of Ce0.8Gd0.2O2-δ and GdBaCo2O5+δ as oxygen separation membranes.Solid State Ionics, 2010, 181(37/38): 1680-1684. |
[34] | LUO L F, CHENG H W, LI G S, et al.Oxygen permeability and CO2-tolerance of Ce0.8Gd0.2O2-δ-LnBaCo2O5+δ dual-phase membranes. J. Energy Chem., 2015, 24(1): 15-22. |
[35] | JIANG B, CHENG H W, LUO L F, et al.Oxygen permeation and stability of Ce0.8Gd0.2O2-δ-PrBaCo2-xFexO5+δ dual-phase composite membranes.J. Mater. Sci. Technol., 2014, 30(12): 1174-1180. |
[36] | KIM J, LIN Y S.Palladium-modified yttria-stabilized zirconia membranes.Ind. Eng. Chem. Res., 2000, 39(6): 2124-2126. |
[37] | WU Z L, LIU M L.Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors.Solid State Ionics, 1996, 93(1/2): 65-84. |
[38] | KIM J, LIN Y S.Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes.J. Membr. Sci., 2000, 167(1): 123-133. |
[39] | CHEN C S, BOUKAMP B A, BOUWMEESTER H J M, et al. Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites.Solid State Ionics, 1995, 76(1/2): 23-28. |
[40] | KHARTON V V, KOVALEVSKY A V, VISKUP A P, et al.Oxygen permeability of Ce0.8Gd0.2O2-δ-La0.7Sr0.3MnO3-δ composite.J. Electrochem. Soc., 2000, 147(7): 2814-2821. |
[41] | LI H B, ZHU X F, LIU Y, et al.Comparative investigation of dual-phase membranes containing cobalt and iron-based mixed conducting perovskite for oxygen permeation.J. Membr. Sci., 2014, 462: 170-177. |
[42] | WANG H H, YANG W S, Cong Y, et al.Structure and oxygen permeability of a dual-phase membrane.J. Membr. Sci. 2003, 224(1/2): 107-115. |
[43] | CHEN T, ZHAO H L, XIE Z X, et al.Ce0.8Sm0.2O2-δ-PrBaCo2O5+δ dual-phase membrane: novel preparation and improved oxygen permeability.J. Power Sources, 2013, 223: 289-292. |
[44] | ZHU X F, WANG H H, YANG W S.Relationship between homogeneity and oxygen permeability of composite membranes.J. Membr. Sci., 2008, 309(1/2): 120-127. |
[45] | LI Q M, ZHU X F, HE Y F, et al.Effects of sintering temperature on properties of dual-phase oxygen permeable membranes.J. Membr. Sci., 2011, 367(1/2): 134-140. |
[46] | ZHU T L, YANG Z B, HAN M F.Evaluation of La0.7Ca0.3Cr0.95Zn0.05O3-δ- Gd0.1Ce0.9O2-δ dual-phase material and its potential application in oxygen transport membrane.J. Mater. Sci. Technol., 2014, 30(10): 954-958. |
[47] | KAGOMIYA I, IIJIMA T, TAKAMURA H.Oxygen permeability of nanocrystalline Ce0.8Gd0.2O1.9-CoFe2O4 mixed-conductive films.J. Membr. Sci., 2006, 286(1/2): 180-184. |
[48] | LUO H X, EFIMOV K, JIANG H Q, et al.CO2-stable and cobalt-free dual-phase membrane for oxygen separation.Angew. Chem. Int. Ed., 2011, 50(3): 759-763. |
[49] | LUO H X, JIANG H Q, KLANDE T, et al. Rapid glycine-nitrate combustion synthesis of the CO2-stable dual phase membrane 40Mn1.5Co1.5O4-δ-60Ce0.9Pr0.1O2-δ for CO2 capture via an oxy-fuel process. J. Membr. Sci., 2012, 423-424: 450-458. |
[50] | KOBAYASHI K, TSUNODA T.Oxygen permeation and electrical transport properties of 60vol% Bi1.6Y0.4O3 and 40vol% Ag composite prepared by the Sol-Gel method.Solid State Ionics, 2004, 175(1-4): 405-408. |
[51] | ZHU X F, LI Q M, HE Y F, et al.Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors.J. Membr. Sci., 2010, 360(1/2): 454-460. |
[52] | ZHU X F, LI Q M, CONG Y, et al.Syngas generation in a membrane reactor with a highly stable ceramic composite membrane.Catal. Commun., 2008, 10(3): 309-312. |
[53] | ZHU X F, LIU Y, CONG Y, et al.Ce0.85Sm0.15O1.925-Sm0.6Sr0.4Al0.3Fe0.7O3 dual-phase membranes: One-pot synthesis and stability in a CO2 atmosphere.Solid State Ionics, 2013, 253: 57-63. |
[54] | LIU Z K, ZHANG G R, DONG X L, et al. Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process. J. Membr. Sci., 2012, 415-416: 313-319. |
[55] | ABRUTIS A, BARTASYTE A, GARCIA G, et al.Metal-organic chemical vapour deposition of mixed-conducting perovskite oxide layers on monocrystalline and porous ceramic substrates.Thin Solid Films, 2004, 449(1/2): 94-99. |
[56] | CHANG X F, ZHANG C, JIN W Q, et al.Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes.J. Membr. Sci., 2006, 285(1/2): 232-238. |
[57] | CAO Z W, ZHU X F, LI W P, et al.Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation.Mater. Lett., 2015, 147: 88-91. |
[58] | CHEN T, ZHAO H L, XIE Z X, et al.Improved oxygen permeability of Ce0.8Sm0.2O2-δ-PrBaCo2O5+δ dual-phase membrane by surface-modifying porous layer.Int. J. Hydrogen Energy, 2012, 37(24): 19133-19137. |
[59] | ZHU X F, LIU H Y, LI Q M, et al.Unsteady-state permeation and surface exchange of dual-phase membranes.Solid State Ionics, 2011, 185(1): 27-31. |
[60] | KOZHUKHAROV V, MACHKOVA M, BRASHKOVA N, et al.Sol-Gel route and characterization of supported perovskites for membrane application.J. Sol-Gel Sci. Technol., 2003, 26(1/2/3): 753-757. |
[61] | LI Q M, ZHU X F, YANG W S.Single-step fabrication of asymmetric dual-phase composite membranes for oxygen separation.J. Membr. Sci., 2008, 325(1): 11-15. |
[62] | LI Q M, LI F.Preparation of self-supported dual-phase oxygen permeation membranes via chemical etching method.Mater. Res. Bull., 2013, 48(3): 1160-1165. |
[63] | HE W, HUANG H, GAO J F, et al.Phase-inversion tape casting and oxygen permeation properties of supported ceramic membranes.J. Membr. Sci., 2014, 452: 294-299. |
[64] | HUANG H, CHENG S Y, GAO J F, et al.Phase-inversion tape-casting preparation and significant performance enhancement of Ce0.9Gd0.1O1.95-La0.6Sr0.4Co0.2Fe0.8O3-δ dual-phase asymmetric membrane for oxygen separation.Mater. Lett., 2014, 137: 245-248. |
[65] | FANG W, GAO J F, CHEN C S.La0.8Sr0.2Cr0.5Fe0.5O3-δ (LSCF)- Zr0.8Y0.2O2-δ (YSZ) based multilayer membrane for CO2 decomposition.Ceram. Int., 2013, 39(6): 7269-7272. |
[66] | FANG W, ZHANG Y, GAO J F, et al.Oxygen permeability of asymmetric membrane of functional La0.8Sr0.2Cr0.5Fe0.5O3-δ (LSCrF)- Zr0.8Y0.2O2-δ (YSZ) supported on porous YSZ.Ceram. Int., 2014, 40(1): 799-803. |
[67] | SHAO X, DONG D H, PARKINSON G, et al.Improvement of oxygen permeation through microchanneled ceramic membranes.J. Membr. Sci., 2014, 454: 444-450. |
[68] | WANG Y F, HAO H S, JIA J F, et al.Improving the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes by a surface-coating layer of GdBaCo2O5+δ.J. Eur. Ceram. Soc., 2008, 28(16): 3125-3130. |
[69] | JOO J H, PARK G S, YOO C Y, et al. Contribution of the surface exchange kinetics to the oxygen transport properties in Gd0.1Ce0.9O2-δ- La0.6Sr0.4Co0.2Fe0.8O3-δ dual-phase membrane. Solid State Ionics, 2013, 253: 64-69. |
[70] | JOO J H, YUN K S, LEE Y, et al.Dramatically enhanced oxygen fluxes in fluorite-rich dual-phase membrane by surface modification.Chem. Mater., 2014, 26(15): 4387-4394. |
[71] | SUM M, CHEN X W, HONG L.Influence of the interfacial phase on the structural integrity and oxygen permeability of a dual-phase membrane.ACS Appl. Mater. Interfaces, 2013, 5(18): 9067-9074. |
[72] | WANG B, YI J X, WINNUBST L, et al.Stability and oxygen permeation behavior of Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ composite membrane under large oxygen partial pressure gradients.J. Membr. Sci., 2006, 286(1/2): 22-25. |
[73] | LUO Y L, GAO J F.Preparation of La0.8Sr0.2Cr0.5Fe0.5O3-δ- Zr0.84Y0.16O1.92 asymmetric ceramic oxygen-permeable membrane by gelcasting.Chin. J. Spectrosc. Lab., 2012, 29(4): 2346-2350. |
[74] | WANG H H, WERTH S, SCHIESTEL T, et al.Perovskite hollow- fiber membranes for the production of oxygen-enriched air.Angew. Chem. Int. Ed., 2005, 44(42): 6906-6909. |
[75] | CHEN X Z, YU L H, LIU Q S, et al.Preparation and application of perovskite hollow fiber oxygen permeable membrane.J. Inorg. Mater., 2008, 23(6): 1216-1220. |
[76] | THURSFIELD A, METCALFE I S.Methane oxidation in a mixed ionic-electronic conducting ceramic hollow fibre reactor module.J. Solid State Electrochem., 2006, 10(8): 604-616. |
[77] | LIU S, LIU M, SHAO Z, et al.From chelating precursor to perovskite oxides and hollow fiber membranes.J. Am. Ceram. Soc., 2007, 90(1): 84-91. |
[78] | JIANG H Q, WANG H H, WERTH S, et al.Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor.Angew. Chem. Int. Ed., 2008, 47(48): 9341-9344. |
[79] | LI W, LIU J J, CHEN C S.Hollow fiber membrane of yttrium- stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation.J. Membr. Sci., 2009, 340(1/2): 266-271. |
[80] | LI W, TIAN T F, SHI F Y, et al.Ce0.8Sm0.2O2-δ-La0.8Sr0.2MnO3-δ dual-phase composite hollow fiber membrane for oxygen separation.Ind. Eng. Chem. Res., 2009, 48(12): 5789-5793. |
[81] | GEFFROY P M, FOULETIER J, RICHET N, et al.Rational selection of MIEC materials in energy production processes.Chem. Eng. Sci., 2013, 87: 408-433. |
[82] | LIU T, HE W, HUANG H, et al.Ce0.8Sm0.2O1.9 -La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase hollow fiber membranes operated under different gradients.Ind. Eng. Chem. Res., 2014, 53(14): 6131-6136. |
[83] | LIU J J, LIU T, WANG W D, et al.Zr0.84Y0.16O1.92- La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase composite hollow fiber membrane targeting chemical reactor applications.J. Membr. Sci., 2012, 389: 435-440. |
[84] | LIU T, WANG Y, YUAN R H, et al.Enhancing the oxygen permeation rate of Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase hollow fiber membrane by coating with Ce0.8Sm0.2O1.9 nanoparticles. ACS Appl. Mater. Interfaces, 2013, 5(19): 9454-9460. |
[85] | TIAN T F, LI W, LIU T, et al.Preparation and oxygen permeability of Ce0.8Sm0.2O2-δ-La0.7Ca0.3CrO3-δ dual-phase composite hollow fiber membrane.Solid State Ionics, 2012, 225: 690-694. |
[86] | FANG S M, CHEN C S, WINNUBST L.Effect of microstructure and catalyst coating on the oxygen permeability of a novel CO2-resistant composite membrane.Solid State Ionics, 2011, 190(1): 46-52. |
[87] | WANG Z T, SUN W P, ZHU Z W, et al.A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane.ACS Appl. Mater. Interfaces, 2013, 5(21): 11038-11043. |
[88] | LUO H X, JIANG H Q, KLANDE T, et al.Novel cobalt-free, noble metal-free oxygen-permeable 40Pr0.6Sr0.4FeO3-δ-60Ce0.9Pr0.1O2-δ dual-phase membrane.Chem. Mater., 2012, 24(11): 2148-2154. |
[89] | LUO H X, JIANG H Q, EFIMOV K, et al.CO2-tolerant oxygen- permeable Fe2O3-Ce0.9Gd0.1O2-δ dual phase membranes.Ind. Eng. Chem. Res., 2011, 50(23): 13508-13517. |
[90] | DONG X L, JIN W Q.Mixed conducting ceramic membranes for high efficiency power generation with CO2 capture.Curr. Opin. Chem. Eng., 2012, 1(2): 163-170. |
[91] | OTHMAN N H, WU Z T, LI K.Bi1.5Y0.3Sm0.2O3-δ-based ceramic hollow fibre membranes for oxygen separation and chemical reactions.J. Membr. Sci., 2013, 432: 58-65. |
[92] | ZHANG K, ZHANG G R, LIU Z K, et al.Enhanced stability of membrane reactor for thermal decomposition of CO2 via porous- dense-porous triple-layer composite membrane.J. Membr. Sci., 2014, 471: 9-15. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||