无机材料学报 ›› 2015, Vol. 30 ›› Issue (6): 571-575.DOI: 10.15541/jim20140565 CSTR: 32189.14.10.15541/jim20140565
陈子琪1, 朱 松1, 林秀娟1,2, 熊 威3,4, 周科朝1, 张 斗1
收稿日期:
2014-11-06
修回日期:
2015-01-05
出版日期:
2015-06-04
网络出版日期:
2015-05-22
作者简介:
陈子琪(1990–), 男, 硕士研究生. E-mail: chenziqiqi@126.com
基金资助:
CHEN Zi-Qi1, ZHU Song1, LIN Xiu-Juan1,2, XIONG Wei3,4, ZHOU Ke-Chao1, ZHANG Dou1
Received:
2014-11-06
Revised:
2015-01-05
Published:
2015-06-04
Online:
2015-05-22
About author:
CHEN Zi-Qi. E-mail: chenziqiqi@126.com
Supported by:
摘要:
实验制备了不同纤维厚度和体积分数的压电纤维复合物, 并在0.1 Hz的激励电压下测试了压电纤维复合物的自由应变性能和驱动性能, 研究复合物典型结构参数对其性能的影响。实验发现, 随着压电纤维厚度增加, 复合物自由应变和顶端位移下降, 1000 V激励电压下, 纤维厚度为200 μm样品纵向自由应变为665 με, 驱动Mylar膜产生的顶端位移为1.9 mm, 而纤维厚度为300 μm和400 μm样品的纵向自由应变仅为纤维厚度为200 μm样品的23.2%和11.7%, 顶端位移为纤维厚度为200 μm样品的45.8%和19.0%。压电纤维复合物具有驱动正交异性, 横向自由应变、纵向自由应变以及横向效应系数随着纤维体积分数的降低而减小, 纤维体积分数为74%的复合物其横向自由应变和纵向自由应变分别为体积分数为59%样品的2.04倍和1.72倍, 横向效应系数也从0.519减小到0.451。
中图分类号:
陈子琪, 朱 松, 林秀娟, 熊 威, 周科朝, 张 斗. 纤维厚度和体积分数对压电纤维复合物应变性能的影响[J]. 无机材料学报, 2015, 30(6): 571-575.
CHEN Zi-Qi, ZHU Song, LIN Xiu-Juan, XIONG Wei, ZHOU Ke-Chao, ZHANG Dou. Effects of Fiber Thickness and Volume Fraction on the Strain Performance of Piezoelectric Fiber Composites[J]. Journal of Inorganic Materials, 2015, 30(6): 571-575.
图3 不同压电纤维厚度的样品纵向自由应变(a)和顶端位移(b)随激励电压的变化
Fig. 3 Voltage amplitude dependence of (a) longitudinal free strain and (b) tip displacement for sample with different thickness of piezoelectric fiber
图4 不同纤维体积分数的压电纤维复合物SEM照片
Fig. 4 SEM micrographs of piezoelectric fiber composites with different volume fractions of piezoelectric fiber (a) 59%; (b) 65%; (c) 74%
[1] | BENT A A, HAGOOD N W.Piezoelectric fiber composites with interdigitated electrodes.Journal of Intelligent Material Systems and Structures, 1997, 8(11): 903-919. |
[2] | BENT A A.Active Fiber Composite Material Systems for Structural Control Application. Newport Beach: Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies, 1999: 166-177. |
[3] | HAGOOD N, KINDEL R, GHANDI K, et al.Improving Transverse Actuation of Piezoceramics Using Interdigitated Surface Electrodes. Albuquerque: Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, 1993: 341-352. |
[4] | WILKIE W K, BRYANT R G, HIGH J W, et al.Low-cost Piezocomposite Actuator for Structural Control Applications. Newport Beach: Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies, 2000: 323-324. |
[5] | CHEN Y, VIRESH W, ZIMCIK D.Development and Verification of Real-time Controllers for F/A-18 Vertical Fin Buffet Load Alleviation. San Diego: Smart Structures and Materials 2006:Smart Structures and Integrated Systems, 2006: 6173101-61731012. |
[6] | TUNGPIMOLRUT K, HATTI N, PHONTIP J, et al.Design of Energy Harvester Circuit for a MFC Piezoelectric Based on Electrical Circuit Modeling. Piscataway: IEEE International Symposium on Applications of Ferroelectrics, 2011: 1-4. |
[7] | TARAZAGA P A, PEAIRS D M, WILKIE W K, et al.Structural Health Monitoring of an Inflatable Boom Subjected to Simulated Micrometeoroid/orbital Debris Damage. San Diego: Proceedings of SPIE, Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure, 2006: 617601-617609. |
[8] | ERIC J, RUGGIERO, DANIEL J, et al. Gossamer spacecraft recent trends in design, analysis, experimentation, and control. Journal of Spacecraft and Rockets, 2006(43): 10-24. |
[9] | PARADIES R, CIRESA P.Active wing design with integrated flight control using piezoelectric macro fiber composites.Smart Materials and Structures, 2009, 18(3): 1-9. |
[10] | WILKIE W K, INMAN D J, LLOYD J M, et al.Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers. Palm Springs, California: SDM 12th AIAA/ASME/ AHS Adaptive Structures Conference, 2004: 19-22. |
[11] | BOWEN C R, NELSON L J, STEVENS R, et al.Optimisation of interdigitated electrodes for piezoelectric actuators and active fiber composites. Journal of Electroceramics, 2006, 16(4): 263-269. |
[12] | WILLIAMS R B, INMAN D J, WILKIE W K.Nonlinear Actuation Properties of Macro Fiber Composite Actuators. Washington, DC: ASME 2003 International Mechanical Engineering Congress and Exposition, 2003: 11-17. |
[13] | LIN X, ZHOU K, BUTTON T W, et al.Fabrication, characterization, and modeling of piezoelectric fiber composites.Journal of Applied Physics, 2013, 114(2): 0270151-0270156. |
[14] | LIN X, ZHANG D, ZHANG X, et al.Modeling and optimization of piezoelectric fiber composites based on finite element method.The Chinese Journal of Nonferrous Metals, 2012, 22(6): 1748-1753. |
[15] | JAHNSON T J, YANG C, ADAMS D E, et al.Embedded sensitivity functions for characterizing structural damage.Smart Materials and Structures, 2005, 14(1): 155-169. |
[16] | DERAEMAEKER A, NASSER N, BENJEDDOU A, et al.Mixing rules for the piezoelectric properties of macro fiber composites.Journal of Intelligent Material Systems and Structures, 2009, 20(12): 1475-1482. |
[1] | 王晓波, 朱于良, 薛稳超, 史汝川, 骆柏锋, 罗骋韬. PT含量变化对PMN-PT单晶的大功率性能影响[J]. 无机材料学报, 2025, 40(7): 840-846. |
[2] | 汤新丽, 丁自友, 陈俊锐, 赵刚, 韩颖超. 基于稀土铕离子荧光标记的磷酸钙纳米材料体内分布与代谢研究[J]. 无机材料学报, 2025, 40(7): 754-764. |
[3] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[4] | 杨光, 张楠, 陈舒锦, 王义, 谢安, 严育杰. 基于多孔ITO电极的WO3薄膜的制备及其电致变色性能[J]. 无机材料学报, 2025, 40(7): 781-789. |
[5] | 孙晶, 李翔, 毛小建, 章健, 王士维. 月桂酸改性剂对氮化铝粉体抗水解性能的影响[J]. 无机材料学报, 2025, 40(7): 826-832. |
[6] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
[7] | 王鲁杰, 张玉新, 李彤阳, 于源, 任鹏伟, 王建章, 汤华国, 姚秀敏, 黄毅华, 刘学建, 乔竹辉. 深海服役环境下碳化硅陶瓷材料的腐蚀及磨损行为[J]. 无机材料学报, 2025, 40(7): 799-807. |
[8] | 李文元, 徐佳楠, 邓瀚澳, 常爱民, 张博. 钒取代对LaTaO4陶瓷微观结构和微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 697-703. |
[9] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[10] | 董晨雨, 郑维杰, 马一帆, 郑春艳, 温峥. 压电力显微镜表征Pb(Mg,Nb)O3-PbTiO3超薄膜弛豫特性[J]. 无机材料学报, 2025, 40(6): 675-682. |
[11] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[12] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
[13] | 崔宁, 张玉新, 王鲁杰, 李彤阳, 于源, 汤华国, 乔竹辉. (TiVNbMoW)Cx高熵陶瓷的单相形成过程与碳空位调控[J]. 无机材料学报, 2025, 40(5): 511-520. |
[14] | 熊思宇, 莫尘, 朱肖伟, 朱国斌, 陈德钦, 刘来君, 施晓东, 李纯纯. 超低介电常数LiBxAl1-xSi2O6微波介质陶瓷的低温烧结[J]. 无机材料学报, 2025, 40(5): 536-544. |
[15] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||