无机材料学报 ›› 2015, Vol. 30 ›› Issue (6): 571-575.DOI: 10.15541/jim20140565 CSTR: 32189.14.10.15541/jim20140565
陈子琪1, 朱 松1, 林秀娟1,2, 熊 威3,4, 周科朝1, 张 斗1
收稿日期:
2014-11-06
修回日期:
2015-01-05
出版日期:
2015-06-04
网络出版日期:
2015-05-22
作者简介:
陈子琪(1990–), 男, 硕士研究生. E-mail: chenziqiqi@126.com
基金资助:
CHEN Zi-Qi1, ZHU Song1, LIN Xiu-Juan1,2, XIONG Wei3,4, ZHOU Ke-Chao1, ZHANG Dou1
Received:
2014-11-06
Revised:
2015-01-05
Published:
2015-06-04
Online:
2015-05-22
About author:
CHEN Zi-Qi. E-mail: chenziqiqi@126.com
Supported by:
摘要:
实验制备了不同纤维厚度和体积分数的压电纤维复合物, 并在0.1 Hz的激励电压下测试了压电纤维复合物的自由应变性能和驱动性能, 研究复合物典型结构参数对其性能的影响。实验发现, 随着压电纤维厚度增加, 复合物自由应变和顶端位移下降, 1000 V激励电压下, 纤维厚度为200 μm样品纵向自由应变为665 με, 驱动Mylar膜产生的顶端位移为1.9 mm, 而纤维厚度为300 μm和400 μm样品的纵向自由应变仅为纤维厚度为200 μm样品的23.2%和11.7%, 顶端位移为纤维厚度为200 μm样品的45.8%和19.0%。压电纤维复合物具有驱动正交异性, 横向自由应变、纵向自由应变以及横向效应系数随着纤维体积分数的降低而减小, 纤维体积分数为74%的复合物其横向自由应变和纵向自由应变分别为体积分数为59%样品的2.04倍和1.72倍, 横向效应系数也从0.519减小到0.451。
中图分类号:
陈子琪, 朱 松, 林秀娟, 熊 威, 周科朝, 张 斗. 纤维厚度和体积分数对压电纤维复合物应变性能的影响[J]. 无机材料学报, 2015, 30(6): 571-575.
CHEN Zi-Qi, ZHU Song, LIN Xiu-Juan, XIONG Wei, ZHOU Ke-Chao, ZHANG Dou. Effects of Fiber Thickness and Volume Fraction on the Strain Performance of Piezoelectric Fiber Composites[J]. Journal of Inorganic Materials, 2015, 30(6): 571-575.
图3 不同压电纤维厚度的样品纵向自由应变(a)和顶端位移(b)随激励电压的变化
Fig. 3 Voltage amplitude dependence of (a) longitudinal free strain and (b) tip displacement for sample with different thickness of piezoelectric fiber
图4 不同纤维体积分数的压电纤维复合物SEM照片
Fig. 4 SEM micrographs of piezoelectric fiber composites with different volume fractions of piezoelectric fiber (a) 59%; (b) 65%; (c) 74%
[1] | BENT A A, HAGOOD N W.Piezoelectric fiber composites with interdigitated electrodes.Journal of Intelligent Material Systems and Structures, 1997, 8(11): 903-919. |
[2] | BENT A A.Active Fiber Composite Material Systems for Structural Control Application. Newport Beach: Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies, 1999: 166-177. |
[3] | HAGOOD N, KINDEL R, GHANDI K, et al.Improving Transverse Actuation of Piezoceramics Using Interdigitated Surface Electrodes. Albuquerque: Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, 1993: 341-352. |
[4] | WILKIE W K, BRYANT R G, HIGH J W, et al.Low-cost Piezocomposite Actuator for Structural Control Applications. Newport Beach: Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies, 2000: 323-324. |
[5] | CHEN Y, VIRESH W, ZIMCIK D.Development and Verification of Real-time Controllers for F/A-18 Vertical Fin Buffet Load Alleviation. San Diego: Smart Structures and Materials 2006:Smart Structures and Integrated Systems, 2006: 6173101-61731012. |
[6] | TUNGPIMOLRUT K, HATTI N, PHONTIP J, et al.Design of Energy Harvester Circuit for a MFC Piezoelectric Based on Electrical Circuit Modeling. Piscataway: IEEE International Symposium on Applications of Ferroelectrics, 2011: 1-4. |
[7] | TARAZAGA P A, PEAIRS D M, WILKIE W K, et al.Structural Health Monitoring of an Inflatable Boom Subjected to Simulated Micrometeoroid/orbital Debris Damage. San Diego: Proceedings of SPIE, Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure, 2006: 617601-617609. |
[8] | ERIC J, RUGGIERO, DANIEL J, et al. Gossamer spacecraft recent trends in design, analysis, experimentation, and control. Journal of Spacecraft and Rockets, 2006(43): 10-24. |
[9] | PARADIES R, CIRESA P.Active wing design with integrated flight control using piezoelectric macro fiber composites.Smart Materials and Structures, 2009, 18(3): 1-9. |
[10] | WILKIE W K, INMAN D J, LLOYD J M, et al.Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers. Palm Springs, California: SDM 12th AIAA/ASME/ AHS Adaptive Structures Conference, 2004: 19-22. |
[11] | BOWEN C R, NELSON L J, STEVENS R, et al.Optimisation of interdigitated electrodes for piezoelectric actuators and active fiber composites. Journal of Electroceramics, 2006, 16(4): 263-269. |
[12] | WILLIAMS R B, INMAN D J, WILKIE W K.Nonlinear Actuation Properties of Macro Fiber Composite Actuators. Washington, DC: ASME 2003 International Mechanical Engineering Congress and Exposition, 2003: 11-17. |
[13] | LIN X, ZHOU K, BUTTON T W, et al.Fabrication, characterization, and modeling of piezoelectric fiber composites.Journal of Applied Physics, 2013, 114(2): 0270151-0270156. |
[14] | LIN X, ZHANG D, ZHANG X, et al.Modeling and optimization of piezoelectric fiber composites based on finite element method.The Chinese Journal of Nonferrous Metals, 2012, 22(6): 1748-1753. |
[15] | JAHNSON T J, YANG C, ADAMS D E, et al.Embedded sensitivity functions for characterizing structural damage.Smart Materials and Structures, 2005, 14(1): 155-169. |
[16] | DERAEMAEKER A, NASSER N, BENJEDDOU A, et al.Mixing rules for the piezoelectric properties of macro fiber composites.Journal of Intelligent Material Systems and Structures, 2009, 20(12): 1475-1482. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||