[1] |
PALMER L C, NEWCOMB C J, KALTZ S R, et al.Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 2008, 108(11): 4754-4783.
|
[2] |
MA G B, LIU X Y.Hydroxyapatite: hexagonal or monoclinicCrystal. Growth & Design, 2009, 9(7): 2991-2994.
|
[3] |
LIANG X H, LYNN A D, KING D, et al.Biocompatible interface films deposited within porous polymers by atomic layer deposition (ALD).Applied Materials & Interfaces, 2009, 1(9): 1988-1995.
|
[4] |
YE W, WANG X X.Ribbon-like and rod-like hydroxyapatite crystals deposited on titanium surface with electrochemical method. Materials Letters, 2007, 61(19/20): 4062-4065.
|
[5] |
JIANG S D, YAO Q Z, ZHOU G T, et al.Fabrication of hydroxyapatite hierarchical hollow microspheres and potential application in water treatment.The Journal of Physical Chemistry C, 2012, 116(7): 4484-4492.
|
[6] |
ESCUDERO A, CALVO M E, OCAÑA M, et al. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir, 2013, 29(6): 1985-1994.
|
[7] |
VISWANATH B, RAVISHANKAR N.Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials, 2008, 29(36): 4855-4863.
|
[8] |
NEIRA I S, KOLENKO Y V, LEBEDEV O I, et al.An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis.Crystal Growth & Design, 2008, 9(1): 466-474.
|
[9] |
CHEN J D, WANG Y J, WEI K, et al.Self-organization of hydroxyapatite nanorods through oriented attachment.Biomaterials, 2007, 28(14): 2775-2280.
|
[10] |
ZHANG Y J, LU J J.A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent.Crystal Growth & Design, 2008, 8(7): 2011-2017.
|
[11] |
WANG A, LIU D, YIN H B, et al.Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers.Materials Science and Engineering C, 2007, 27(4): 865-869.
|
[12] |
LIANG Y H, LIU C H, LIAO S H, et al.Co-synthesis of cargo-loaded hydroxyapatite/alginate core-shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pre-gel method.Applied Materials & Interfaces, 2012, 4(12): 6720-6727.
|
[13] |
WANG L, SHELTON R M, COPPER P R, et al.Evaluation of sodium alginate for bone marrow cell tissue engineering.Biomaterials, 2003, 20(24): 3475-3481.
|
[14] |
ANDERSEN T, MELVIK J E, ALSBERG E, et al.Ionically gelled alginate foams: physical properties controlled by operational and macromolecular parameters. Biomacromolecules, 2012, 13(11): 3703-3710.
|
[15] |
XIE M, ZHANG Z B, ANDREASSEN J P, et al.Biocomposites prepared by alkaline phosphatase mediated mineralization of alginate microbeads,Advances, 2012, 2: 1457-1465.
|
[16] |
IWASAKI N, YAMANE S T, MAJIMA T, et al.Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan.Biomacromolecules, 2004, 5(3): 828-833.
|
[17] |
MOURIÑO V, NEWBY P, PISHBIN F, et al. Physicochemical, biological and drug-release properties of gallium crosslinked alginate/nanoparticulate bioactive glass composite films.Soft Matter, 2011, 7(14): 6705-6712.
|
[18] |
LENG B X, JIANG F G, LU K B, et al.Growth of calcium carbonate mediated by slowly released alginate.Crystal Engineering Communication, 2010, 12(3): 730-736.
|
[19] |
VALLET-REGÍ, GONZÁLEZ-CALBET J M. Calcium phosphates as substitution of bone tussues,Progress in Solid State Chemistry, 2004, 32(1): 1-31.
|
[20] |
ZHANG X J, LIN D Y, YAN X H, et al.Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution.Journal of Crystal Growth, 2011, 336(1): 60-66.
|
[21] |
CAO M, WANG Y, GUO C, et al.Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions.Langmuir, 2004, 20(11): 4784-4786.
|
[22] |
HAO LI-JING, YANG HUI, ZHAO NA- RU, et al.Hydrothermal synthesis of hydroxyapatite fibers precipitated by propionmide.Journal of Inorganic Materials, 2013, 28(1): 63-68.
|
[23] |
DING H C, PAN H H, XU X R, et al.Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition.Crystal Growth & Desigin, 2014, 14(2): 763-769.
|
[24] |
ZENG H C.Synthetic architecture of interior space for inorganic nanostructures. Journal of Materials Chemistry, 2006, 16: 649-662.
|
[25] |
ZHANG Y J, LU J J, WANG J Q, et al.Synthesis of nanorod and needle-like hydroxyapatite crystal and role of pH adjustment.Journal of Crystal Growth, 2009, 311(23/24): 4740-4746.
|
[26] |
CHEN H F, TANG Z, CLARKSON B H, et al.Acellular synthesis of a human enamel-like microstructure.Advanced Materials, 2006, 18(14): 1846-1851.
|
[27] |
XU A W, MA Y R, CÖLFEN H. Biomimetic mineralization.Journal of Materials Chemistry, 2007, 17: 415-449.
|
[28] |
KIM H W, NOH Y J, KOH Y H, et al.Effect of CaF2 on desification and properites of hydroxyapapite-zirconia composites for biomedical applications.Biomaterials, 2002, 23(20): 4113-4121.
|
[29] |
BERTONI E, BIGI A, FALINI G, et al.Hydroxyapatite/polyacrylic acid nanocrystals.Journal of Materials Chemistry, 1999, 9: 779-782.
|
[30] |
DONNERS J J J M, NOLTE R J M, SOMMERDIJK N A J M. Dendrimer-based hydroxyapatite composites with remarkable materials properties.Advanced Materials, 2003, 15(4): 313-316.
|