[1] MITZI D B, GUNAWAN O, TODOROV T K,et al. The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells, 2011, 95: 1421-1436. [2] WANG W, WINKLER M T, GUNAWAN O,et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater., 2013, 4: 1301465. [3] SHOCKLEY W, QUEISSER H.Detailed balance limit of efficiency of p-n junction solar cells.J. Appl. Phys., 1961, 32: 510-519. [4] GOKMEN T, GUNAWAN O, TODOROV T K,et al. Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett., 2013, 103: 103506. [5] MENG L, LI Y F, YAO B,et al. Mechanism of effect of intrinsic defects on electrical and optical properties of Cu2CdSnS4: an experimental and first-principles study. J. Phys. D Appl. Phys., 2015, 48: 445105. [6] OZEL F, KUS M, YAR A,et al. Fabrication of quaternary Cu2FeSnS4(CFTS) nanocrystalline fibers through electrospinning technique. J. Mater. Sci., 2015, 50: 777-783. [7] YU J J, DENG H M, ZHANG Q,et al. The role of sulfurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics. Mater. Lett., 2018, 233: 111-114. [8] SAPELI M M I, FERDAOUS M T, SHAHAHMADI S A,et al. Effects of Cr doping in the structural and optoelectronic properties of Cu2ZnSnS4(CZTS) thin film by magnetron co-sputtering. Mater. Lett., 2018, 221: 22-25. [9] MATSUBARA K, YAMADA A, ISHIZUKA S, ,et al. Wide-gap CIGS solar cells with Zn1-yMgyO transparent conducting film. MRS Proceed.. Wide-gap CIGS solar cells with Zn1-yMgyO transparent conducting film. MRS Proceed., 2005, 865: F14.6. [10] GUO Y X, CHEN W J, JIANG J C,et al. The structural, morphological and optical-electrical characteristic of Cu2XSnS4(X:Cu,Mg) thin films fabricated by novel ultrasonic co-spray pyrolysis. Mater. Lett., 2016, 172: 68-71. [11] AGAWANE G L, VANALAKAR S A, KAMBLE A S,et al. Fabrication of Cu2(ZnxMg1-x)SnS4 thin films by pulsed laser deposition technique for solar cell applications. Mater. Sci. Semicond. Process., 2018, 76: 50-54. [12] KUO D H, WUBET W.Mg dopant in Cu2ZnSnSe4: an n-type former and a promoter of electrical mobility up to 120 cm2·V-1·s-1.J. Solid State Chem., 2014, 215: 122-127. [13] MAEDA T, NAKAMURAS, WADA T. First-principles study on Cd doping in Cu2ZnSnS4 and Cu2ZnSnSe4. Jpn. J. Appl. Phys., 2012, 51: 10NC11-10NC16. [14] SUN D, DING Y Y, KONG L W,et al. First principles calculation of the electronic-optical properties of Cu2MgSn(SxSe1-x)4. Optoelectronics Letters, 2020, 16: 29-33. [15] XIAO Z Y, LI Y, YAO B,et al. Bandgap engineering of Cu2CdxZn1-xSnS4 alloy for photovoltaic applications: a complementary experimental and first-principles study. J. Appl. Phys., 2013, 114(18): 183506. [16] KRESSE G, FURTHMUELLER J.Efficiency ofab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6: 15-50. [17] KRESSE G, JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys. Rev. B, 1999, 59: 1758-1775. [18] HEYD J, SCUSERIA G E, ERNZERHOF M.Hybrid functionals based on a screened Coulomb potential.J. Chem. Phys., 2003, 118: 8207-8215. [19] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple.Phys. Rev. Lett., 1997, 77: 3865-3868. [20] XIAO W, WANG J N, ZHAO X S, et al. Intrinsic defects and Na doping in Cu2ZnSnS4: a density-functional theory study. Sol. Energy, 2015, 116: 125-132. [21] ZHANG S B, NORTHRUP J E.Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion.Phys. Rev. Lett., 1991, 67: 2339-2342. [22] LANY S, ZUNGER A.Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs.Phys. Rev. B, 2008, 78: 1879-1882. [23] DASGUPTA U, SAHA S K, PAL A J.Fully-depleted pn-junction solar cells based on layers of Cu2ZnSnS4 (CZTS) and copper-diffused AgInS2 ternary nanocrystals.Sol. Energy Mater. Sol. Cells, 2014, 124: 79-85. [24] KOMSA H P, RANTALA T T, PASQUARELLO A.Finite-size supercell correction schemes for charged defect calculations. Phys. Rev. B., 2012, 86: 045112. [25] PAIER J, ASAHI R, NAGOYA A, et al. Cu2ZnSnS4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study.Phys. Rev. B, 79: 115126. [26] ZHANG X L, HAN M M, ZHENG X H,et al. The suppression of Cu-related charge localized defects in Cu2ZnSnS4 thin film solar cells. Sol. Energy Mater. Sol. Cells, 2018, 180: 118-122. [27] ZHANG X L, HAN M M, ZHENG Z,et al. The instability of S vacancies in Cu2ZnSnS4. RSC Adv., 2016, 6: 15424-15429. [28] ZHANG X L, HAN M M, ZHENG Z,et al. The role of Sb in solar cell material Cu2ZnSnS4. J. Mater. Chem. A, 2017, 5: 6606-6612. [29] NAGHAVI N, ABOU-RAS D, ALLSOP N,et al. Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovoltaics, 2010, 18: 411-433. [30] CHEN S Y, WALSH A, GONG X G,et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater., 2013, 25: 1522-1539. |