Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (8): 807-819.DOI: 10.15541/jim20200652
• REVIEW • Previous Articles Next Articles
PENG Xinglin1,2(), LI Shuxing3(
), LIU Zehua4, YAO Xiumin1,2, XIE Rongjun3, HUANG Zhengren1,2,4, LIU Xuejian1,2(
)
Received:
2020-11-12
Revised:
2020-12-24
Published:
2021-08-20
Online:
2021-03-01
Contact:
LIU Xuejian, professor. E-mail:xjliu@mail.sic.ac.cn; LI Shuxing, lecturer. E-mail: lishuxing@xmu.edu.cn
About author:
PENG Xinglin(1995-), male, PhD candidate. E-mail: pengxinglin@student.sic.ac.cn
Supported by:
CLC Number:
PENG Xinglin, LI Shuxing, LIU Zehua, YAO Xiumin, XIE Rongjun, HUANG Zhengren, LIU Xuejian. Phosphor Ceramics for High-power Solid-state Lighting[J]. Journal of Inorganic Materials, 2021, 36(8): 807-819.
Fig. 2 Al2O3-YAG:Ce composite phosphor ceramics[11] (a) SEM image of the Al2O3-YAG:Ce composite ceramics; (b) Laser irradiation spot temperature of the ceramics varies with different Al2O3 contents; (c) Temperature distribution curves; (d) Thermal conductivity as a function of Al2O3 content; (e) Thermal conductivity as a function of the temperature; (f) Temperature-dependent integrated emission intensity of the composite ceramics Colorful figures are available on website
Doped ions | Ion radius/nm | Occupied lattice | Ref. |
---|---|---|---|
Y3+ | 0.1019 | A | [ |
Gd3+ | 0.1053 | A | [ |
Tb3+ | 0.104 | A | [ |
Lu3+ | 0.0977 | A | [ |
Mg2+ | 0.089 | A | [ |
Sc3+ | 0.087 | A | [ |
Al3+ | 0.0535 | B | [ |
Sc3+ | 0.0745 | B | [ |
Mg2+ | 0.072 | B | [ |
Ga3+ | 0.062 | B | [ |
Al3+ | 0.039 | C | [ |
Si4+ | 0.026 | C | [ |
Table 1 Doping ions and ionic radii of garnet phosphor ceramics at different lattice positions
Doped ions | Ion radius/nm | Occupied lattice | Ref. |
---|---|---|---|
Y3+ | 0.1019 | A | [ |
Gd3+ | 0.1053 | A | [ |
Tb3+ | 0.104 | A | [ |
Lu3+ | 0.0977 | A | [ |
Mg2+ | 0.089 | A | [ |
Sc3+ | 0.087 | A | [ |
Al3+ | 0.0535 | B | [ |
Sc3+ | 0.0745 | B | [ |
Mg2+ | 0.072 | B | [ |
Ga3+ | 0.062 | B | [ |
Al3+ | 0.039 | C | [ |
Si4+ | 0.026 | C | [ |
Fig. 3 YMASG:Ce phosphor ceramics[44] (a) PLE spectra; (b) PL spectra; (c) Peak wavelength and FWHM; (d) Chromaticity color coordinates colorful figures are available on website
Fig. 4 PL and PLE spectra of YAG:Ce3+/Pr3+/Cr3+phosphor ceramics[29] (a) YAG:Ce; (b) YAG:Pr; (c) YAG:Cr; (d) YAG:Ce,Pr; (e) YAG:Ce,Cr; (f) YAG:Ce,Pr,Cr
Methods | Composition | Emission peak position/nm | CCT/K | CRI | Ref. |
---|---|---|---|---|---|
Adjust matrix chemical composition | GdYAG:Ce | 525-554 | 2968-4299 | 64.8 | [ |
GdYAG:Ce | 528-550 | 3688-4782 | 67.1 | [ | |
Al2O3-GdYAG:Ce | 550* | 5010 | 71.4 | [ | |
MgAl2O4-GdYAG:Ce | 550* | 4543 | 70 | [ | |
TbAG:Ce | 556-564 | 4000-4900 | - | [ | |
Al2O3-TbAG:Ce | 555 | 3580 | 63 | [ | |
TGAG:Ce | 550-570 | 3681 | 74.7 | [ | |
GAGG:Ce | 568-574 | 3000 | 78.9 | [ | |
GAGG:Ce | 570 | 2800 | 58.7 | [ | |
YMASG:Ce | 537-577 | 4384 | 81 | [ | |
YMASG:Ce | 533-598 | 2018-4516 | - | [ | |
Al2O3-YMASG:Ce | 552-610 | 4860 | 82.5 | [ | |
Adjust the luminescencecenter | YAG:Ce3+/Pr3+ | 535, 564, 609, 637 | - | 66.9 | [ |
YAG:Ce3+/Cr3+ | 534, 677, 688, etc. | - | 72 | [ | |
YAG:Ce3+/Cr3+ | 530, 690, 705 | 4329 | - | [ | |
YAG:Ce3+/Pr3+/Cr3+ | 530, 609, 689, etc. | - | 78 | [ | |
YAG:Ce3+/Mn2+ | 520-590 | 3870-5196 | 82.5 | [ | |
YAG:Ce3+/Dy3+ | 496, 582, etc. | 5609 | - | [ | |
LuAG:Dy3+ | 482, 583, 675,etc. | 3485-3619 | - | [ | |
Composite red fluorescent material | LuAG:Ce/(Sr,Ca)AlSiN3:Eu | 515, 640 | 4450 | 94 | [ |
LuAG:Ce/Eu-doped nitride | 565-587 | 5800 | 89.4 | [ | |
YAG:Ce/Sr2Si5N8:Eu | 610* | 3952 | 82 | [ | |
Al2O3-YAG:Ce/Red QD | 552, 634 | 3161-6035 | 80 | [ |
Table 2 Summary of three methods for improving CRI and reducing CCT of garnet type phosphor ceramics
Methods | Composition | Emission peak position/nm | CCT/K | CRI | Ref. |
---|---|---|---|---|---|
Adjust matrix chemical composition | GdYAG:Ce | 525-554 | 2968-4299 | 64.8 | [ |
GdYAG:Ce | 528-550 | 3688-4782 | 67.1 | [ | |
Al2O3-GdYAG:Ce | 550* | 5010 | 71.4 | [ | |
MgAl2O4-GdYAG:Ce | 550* | 4543 | 70 | [ | |
TbAG:Ce | 556-564 | 4000-4900 | - | [ | |
Al2O3-TbAG:Ce | 555 | 3580 | 63 | [ | |
TGAG:Ce | 550-570 | 3681 | 74.7 | [ | |
GAGG:Ce | 568-574 | 3000 | 78.9 | [ | |
GAGG:Ce | 570 | 2800 | 58.7 | [ | |
YMASG:Ce | 537-577 | 4384 | 81 | [ | |
YMASG:Ce | 533-598 | 2018-4516 | - | [ | |
Al2O3-YMASG:Ce | 552-610 | 4860 | 82.5 | [ | |
Adjust the luminescencecenter | YAG:Ce3+/Pr3+ | 535, 564, 609, 637 | - | 66.9 | [ |
YAG:Ce3+/Cr3+ | 534, 677, 688, etc. | - | 72 | [ | |
YAG:Ce3+/Cr3+ | 530, 690, 705 | 4329 | - | [ | |
YAG:Ce3+/Pr3+/Cr3+ | 530, 609, 689, etc. | - | 78 | [ | |
YAG:Ce3+/Mn2+ | 520-590 | 3870-5196 | 82.5 | [ | |
YAG:Ce3+/Dy3+ | 496, 582, etc. | 5609 | - | [ | |
LuAG:Dy3+ | 482, 583, 675,etc. | 3485-3619 | - | [ | |
Composite red fluorescent material | LuAG:Ce/(Sr,Ca)AlSiN3:Eu | 515, 640 | 4450 | 94 | [ |
LuAG:Ce/Eu-doped nitride | 565-587 | 5800 | 89.4 | [ | |
YAG:Ce/Sr2Si5N8:Eu | 610* | 3952 | 82 | [ | |
Al2O3-YAG:Ce/Red QD | 552, 634 | 3161-6035 | 80 | [ |
Fig. 5 CaAlSiN3:Eu2+ phosphor ceramics[6, 58] (a) Single CaAlSiN3: Eu2+ grain CL spectral line scan; (b) CL spectra; (c) Crystal structure transition; (d) Core-shell structure schematic diagram; (e) Quantum efficiency of samples; (f) Thermal stability of samples with different Si 3N4 and SiO2 contents; (g) Influence of incident power density on luminous flux; (h) Luminous efficiency of samples Colorful figures are available on website
[1] |
SCHUBERT E F, KIM J K. Solid-state light sources getting smart. Science , 2005, 308(5726):1274-1278.
DOI URL |
[2] | WIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser & Photonics Reviews , 2013, 7(6):963-993. |
[3] | LI S, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting. Laser & Photonics Reviews , 2018, 12(12):1800173 |
[4] |
FAN F, TURKDOGAN S, LIU Z, et al. A monolithic white laser. Nat. Nanotechnol. , 2015, 10(9):796-803.
DOI URL |
[5] |
YAO Q, HU P, SUN P, et al. YAG:Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting. Adv. Mater. , 2020, 32(19):1907888.
DOI URL |
[6] |
LI S X, TANG D M, TIAN Z F, et al. New insights into the microstructure of translucent CaAlSiN3:Eu2+ phosphor ceramics for solid-state laser lighting. Journal of Materials Chemistry C , 2017, 5(5):1042-1051.
DOI URL |
[7] | LENEF A, KELSO J, ZHENG Y, et al. Radiance limits of ceramic phosphors under high excitation fluxes. Proceedings of SPIE , 2013, 8841:884107. |
[8] |
XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation. Journal of Materials Chemistry C , 2019, 7(37):11449-11456.
DOI URL |
[9] |
COZZAN C, LHEUREUX G, O'DEA N, et al. Stable, heat-conducting phosphor composites for high-power laser lighting. ACS Appl. Mater. Interfaces , 2018, 10(6):5673-5681.
DOI URL |
[10] |
LI S, ZHU Q, TANG D, et al. Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting. Journal of Materials Chemistry C , 2016, 4(37):8648-8654.
DOI URL |
[11] |
WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG:Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration. Journal of Materials Chemistry C , 2019, 7(13):3901-3908.
DOI URL |
[12] |
MA X G, LI X Y, LI J Q, et al. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics. Nature Communications , 2018, 9(1):1175.
DOI URL |
[13] |
PARK J, KIM J, KWON H. Phosphor-aluminum composite for energy recycling with high-power white lighting. Advanced Optical Materials , 2017, 5(19):1700347.
DOI URL |
[14] | ZHENG P, LI S, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light. Laser & Photonics Reviews , 2019, 13(10):14930-14940. |
[15] |
ZHANG L, SUN B, GU L, et al. Enhanced light extraction of single-surface textured YAG:Ce transparent ceramics for high power white LEDs. Applied Surface Science , 2018, 455:425-432.
DOI URL |
[16] |
ZHANG Y, HU S, WANG Z, et al. Pore-existing Lu3Al5O12:Ce ceramic phosphor: an efficient green color converter for laser light source. Journal of Luminescence , 2018, 197:331-334.
DOI URL |
[17] |
HUANG P, ZHOU B, ZHENG Q, et al. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes. Advanced Materials , 2019, 32(1):1905951.
DOI URL |
[18] |
LIU X, QIAN X, ZHENG P, et al. Preparation and optical properties of MgAl2O4-Ce:GdYAG composite ceramic phosphors for white LEDs. Journal of the European Ceramic Society , 2019, 39(15):4965-4971.
DOI URL |
[19] |
SUN B H, ZHANG L, HUANG G C, et al. Surface texture induced light extraction of novel Ce:YAG ceramic tubes for outdoor lighting. Journal of Materials Science , 2019, 54(1):159-171.
DOI URL |
[20] |
WAGNER A, RATZKER B, KALABUKHOV S, et al. Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening. Journal of Luminescence , 2019, 213:454-458.
DOI URL |
[21] |
PARK H K, OH J R, DO Y R. 2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes. Optics Express , 2011, 19(25):25593-25601.
DOI URL |
[22] |
PARK H K, YOON S W, CHOI D Y, et al. Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals. Journal of Materials Chemistry C , 2013, 1(9):1732-1738.
DOI URL |
[23] |
TANG Y, ZHOU S, CHEN C, et al. Composite phase ceramic phosphor of Al2O3-Ce:YAG for high efficiency light emitting. Opt. Express , 2015, 23(14):17923-17928.
DOI URL |
[24] |
HU S, ZHANG Y, WANG Z, et al. Phase composition, microstructure and luminescent property evolutions in “light-scattering enhanced” Al 2O3-Y3Al5O12: Ce3+ ceramic phosphors. Journal of the European Ceramic Society , 2018, 38(9):3268-3278.
DOI URL |
[25] |
CHEN J, TANG Y, YI X, et al. Fabrication of (Tb,Gd)3Al5O12:Ce3+ phosphor ceramics for warm white light-emitting diodes application. Optical Materials Express , 2019, 9(8):3333-3341.
DOI URL |
[26] |
LIU S, SUN P, LIU Y, et al. Warm white light with a high color rendering index from a single Gd3Al4GaO12:Ce3+ transparent ceramic for high-power LEDs and LDs. ACS Appl. Mater. Interfaces , 2018, 11(2):2130-2139.
DOI URL |
[27] |
TIAN Y, TANG Y, YI X, et al. The analyses of structure and luminescence in (MgyY3-y)(Al5-ySiy)O12 and Y3(MgxAl5-2xSix)O12 ceramic phosphors. Journal of Alloys and Compounds , 2020, 813:152236.
DOI URL |
[28] |
AO G, TANG Y, YI X, et al. Red emission generation in Ce3+/Mn2+ co-doping Y3Al5O12 phosphor ceramics for warm white lighting emitting diodes. Journal of Alloys and Compounds , 2019, 798:695-699.
DOI URL |
[29] |
FENG S, QIN H, WU G, et al. Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application. Journal of the European Ceramic Society , 2017, 37(10):3403-3409.
DOI URL |
[30] |
TANG Y, ZHOU S, YI X, et al. The characterization of Ce/Pr-doped YAG phosphor ceramic for the white LEDs. Journal of Alloys and Compounds , 2018, 745:84-89.
DOI URL |
[31] |
TANG Y R, ZHOU S M, YI X Z, et al. The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics. Journal of the American Ceramic Society , 2017, 100(6):2590-2595.
DOI URL |
[32] |
BICANIC K T, LI X Y, SABATINI R P, et al. Design of phosphor white light systems for high-power applications. ACS Photonics , 2016, 3(12):2243-2248.
DOI URL |
[33] |
PARK H K, OH J H, KANG H, et al. Hybrid 2D photonic crystal- assisted Lu3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index. ACS Appl. Mater. Interfaces , 2015, 7(8):4549-4559.
DOI URL |
[34] |
PRICHA I, ROSSNER W, MOOS R, et al. Layered ceramic phosphors based on CaAlSiN3:Eu and YAG:Ce for white light- emitting diodes. Journal of the American Ceramic Society , 2016, 99(1):211-217.
DOI URL |
[35] |
SONG Y H, HAN G S, JI E K, et al. The novel design of a remote phosphor ceramic plate for white light generation in high power LEDs. Journal of Materials Chemistry C , 2015, 3(24):6148-6152.
DOI URL |
[36] |
LIU X, CHEN B, TU B, et al. Variation of structure and photoluminescence properties of Ce3+ doped MgAlON transparent ceramics with different doping content. Materials , 2017, 10(7):792.
DOI URL |
[37] |
JOSHI B, LEE S W. Luminescence properties of Eu2+, Gd3+ and Pr3+ doped translucent Sialon phosphors. Journal of Rare Earths , 2015, 33(11):1142-1147.
DOI URL |
[38] |
NISHIURA S, TANABE S, FUJIOKA K, et al. Properties of transparent Ce:YAG ceramic phosphors for white LED. Optical Materials , 2011, 33(5):688-691.
DOI URL |
[39] |
SONG Y H, JI E K, JEONG B W, et al. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting. Sci. Rep. , 2016, 6:31206.
DOI URL |
[40] |
HU C, SHI Y, FENG X Q, et al. YAG:Ce/(Gd,Y)AG:Ce dual- layered composite structure ceramic phosphors designed for bright white light-emitting diodes with various CCT. Optics Express , 2015, 23(14):18243-18255.
DOI URL |
[41] |
ANGLE J P, WANG Z J, DAMES C, et al. Comparison of two-phase thermal conductivity models with experiments on dilute ceramic composites. Journal of the American Ceramic Society , 2013, 96(9):2935-2942.
DOI URL |
[42] |
GU C, WANG X J, XIA C, et al. A new CaF2-YAG: Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs. Journal of Materials Chemistry C , 2019, 7(28):8569-8574.
DOI URL |
[43] |
LIU Y, HU S, ZHANG Y, et al. Crystal structure evolution and luminescence property of Ce3+-doped Y2O3-Al2O3-Sc2O3 ternary ceramics. Journal of the European Ceramic Society , 2020, 40(3):840-846.
DOI URL |
[44] |
DU Q P, FENG S W, QIN H M, et al. Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG:Ce transparent ceramic phosphors. Journal of Materials Chemistry C , 2018, 6(45):12200-12205.
DOI URL |
[45] |
BI J, LI JG, ZHU Q, et al. Yellow-emitting (Tb1-xCex)3Al5O12 phosphor powder and ceramic (0≤x≤0.05): phase evolution, photoluminescence, and the process of energy transfer. Ceramics International , 2017, 43(11):8163-8170.
DOI URL |
[46] |
JI EK, SONG YH, BAK S H, et al. The design of a ceramic phosphor plate with functional materials for application in high power LEDs. Journal of Materials Chemistry C , 2015, 3(48):12390-12393.
DOI URL |
[47] |
LIU Y, LIU S, SUN P, et al. Transparent ceramics enabling high luminous flux and efficacy for the next-generation high-power LED light. ACS Appl. Mater. Interfaces , 2019, 11(24):21697-21701.
DOI URL |
[48] |
KRASNOSHCHOKA A, THORSETH A, DAM-HANSEN C, et al. Investigation of saturation effects in ceramic phosphors for laser lighting. Materials , 2017, 10(12):1407.
DOI URL |
[49] |
XU J, HU B F, XU C, et al. A unique color converter geometry for laser-driven white lighting. Optical Materials , 2018, 86:286-290.
DOI URL |
[50] |
YI X, ZHOU S, CHEN C, et al. Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs. Ceramics International , 2014, 40(5):7043-7047.
DOI URL |
[51] |
LIU X, ZHOU H, HU Z, et al. Transparent Ce:GdYAG ceramic color converters for high-brightness white LEDs and LDs. Optical Materials , 2019, 88:97-102.
DOI URL |
[52] |
LIU X, QIAN X, HU Z, et al. Al2O3-Ce:GdYAG composite ceramic phosphors for high-power white light-emitting-diode applications. Journal of the European Ceramic Society , 2019, 39(6):2149-2154.
DOI URL |
[53] |
CHEN J, TANG Y, YI X, et al. Al2O3-Ce:Tb3Al5O12 composite ceramic phosphors for high efficiency warm white light illumination. Optical Materials , 2019, 97:109384.
DOI URL |
[54] |
TIAN Y, TANG Y, YI X, et al. Study of composite Al2O3-Ce: Y3Mg1.8Al1.4Si1.8O12 ceramic phosphors. Opt. Lett. , 2019, 44(19):4845-4848.
DOI URL |
[55] |
ZHENG R, LUO D, YUAN Y, et al. Dy3+/Ce3+ codoped YAG transparent ceramics for single-composition tunable white-light phosphor. Journal of the American Ceramic Society , 2015, 98(10):3231-3235.
DOI URL |
[56] |
HU S, LU C H, QIN X P, et al. Color tuning of Lu3Al5O12:Dy3+ ceramic-based white light-emitting phosphorsvia Yb incorporation. Journal of the European Ceramic Society , 2017, 37(1):229-237.
DOI URL |
[57] |
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chemical Reviews , 2018, 118(4):1951-2009.
DOI URL |
[58] |
LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3:Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting. Journal of Materials Chemistry C , 2016, 4(35):8197-8205.
DOI URL |
[59] |
JOSHI B, HOON J S, KSHETRI Y K, et al. Transparent Sialon phosphor ceramic plates for white light emitting diodes applications. Ceramics International , 2018, 44(18):23116-23124.
DOI URL |
[60] |
JOSHI B, KSHETRI Y K, GYAWALI G, et al. Transparent Mg-α/β-Sialon:Eu2+ ceramics as a yellow phosphor for pc-WLED. Journal of Alloys and Compounds , 2015, 631:38-45.
DOI URL |
[61] |
LI K, WANG H, LIU X, et al. Mn2+ activated MgAlON transparent ceramic: a new green-emitting transparent ceramic phosphor for high-power white LED. Journal of the European Ceramic Society , 2017, 37(13):4229-4233.
DOI URL |
[62] | PRICHA I, ROSSNER W, MOOS R. Pressureless sintering of luminescent CaAlSiN3:Eu ceramics. Journal of Ceramic Science and Technology , 2015, 6(1):63-67. |
[63] |
RAUKAS M, KELSO J, ZHENG Y, et al. Ceramic phosphors for light conversion in LEDs. Ecs Journal of Solid State Science and Technology , 2013, 2(2):R3168-R3176.
DOI URL |
[64] | WIEG A T, PENILLA E H, HARDIN C L, et al. Broadband white light emission from Ce:AlN ceramics: high thermal conductivity down-converters for LED and laser-driven solid state lighting. Appl. Materials , 2016, 4(12):126105. |
[65] |
SCHNICK W. Shine a light with nitrides. Physica Status Solidi (RRL)-Rapid Research Letters , 2009, 3(7/8):A113-A114.
DOI URL |
[66] |
XIE R J, HIROSAKI N, SUEHIRO T, et al. A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light- emitting diodes. Chemistry of Materials , 2006, 18(23):5578-5583.
DOI URL |
[67] |
LI S X, WANG L, TANG D M, et al. Achieving high quantum efficiency narrow-band β-Sialon:Eu2+phosphors for high-brightness LCD backlights by reducing the Eu3+ luminescence killer. Chemistry of Materials , 2018, 30(2):494-505.
DOI URL |
[68] |
XIE R J, HIROSAKI N, MITOMO M, et al. Wavelength-tunable and thermally stable Li-α-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes. Applied Physics Letters , 2006, 89(24):241103.
DOI URL |
[69] |
ZHANG Y, LIU Y, YANG L, et al. Preparation and luminescence properties of thermally stable Mn4+ doped spinel red-emitting ceramic phosphors. Journal of Luminescence , 2020, 220:117016.
DOI URL |
[70] |
ARREDONDO A, DESIRENA H, MORENO I, et al. Dual color tuning in Ce3+-doped oxyfluoride ceramic phosphor plate for white LED application. Journal of the American Ceramic Society , 2019, 102(3):1425-1434.
DOI URL |
[71] |
HU S, LIU Y, ZHANG Y, et al. 3D printed ceramic phosphor and the photoluminescence property under blue laser excitation. Journal of the European Ceramic Society , 2019, 39(8):2731-2738.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||