Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (3): 225-234.DOI: 10.15541/jim20160192
• Orginal Article • Next Articles
CHEN Li-Neng, YAN Meng-Yu, MEI Zhi-Wen, MAI Li-Qiang
Received:
2016-03-28
Revised:
2016-06-16
Published:
2017-03-20
Online:
2017-02-24
About author:
CHEN Li-Neng. E-mail: clnsmiles@whut.edu.cn
Supported by:
CLC Number:
CHEN Li-Neng, YAN Meng-Yu, MEI Zhi-Wen, MAI Li-Qiang. Research Progress and Prospect of Aqueous Zinc Ion Battery[J]. Journal of Inorganic Materials, 2017, 32(3): 225-234.
Fig. 5 (a) Cycling performance of rechargeable zinc ion batteries with the unmodified ZnAB and ZnAB+AC (charge/discharge at 200 mA h/g); (b) CV curves of the unmodified ZnAB and ZnAB+12wt%AC at scanning rate of 0.1 mV/s[45]
Fig. 6 (a) Discharge curves of the zinc ion battery at various rates and (b) cycle life performance of the zinc ion battery at a continuous cycling 6C/6C charge/discharge test[9]
Fig. 7 Potential profiles of the zinc/α-MnO2 Zn-ion battery during the first (black line) and the second (red line) cycles, and their cycling performance up to 30 cycles (inset). (b) Ex-situ X-ray diffraction patterns of the electrodes at various charge and discharge stages: original electrode (1), half discharged electrode (2), fully discharged electrode (3), fully recharged electrode (4), and fully re-discharged electrode (5), as indicated in Figure (a)[68]
Fig. 10 (a) Capacity versus number of cycles of the full cell at the current density of 60 mA/g ; (b) Capacity versus number of cycles of the full cell at different current densities[73]
Fig. 11 (a) Effect of HD Zn compared to Zn sheet as an anode on charge and discharge profiles of cycle 2 at 5C rate and (b) fractional capacity vs. cycle number compared for sheet Zn and HD Zn at 5C rate[74]
Fig. 12 (a) CVs of ZnHCF in 0.5 mol/L Na2SO4 (1), 0.5 mol/ L K2SO4 (2), and 1 mol/L ZnSO4 (3) at scan rate of 2 mV/s ; (b) Cycle life tests at a rate of 1 C (square) and 5C (circle), 1C = 60 mA/g[75]
Species | Diameter/nm | D/(×10-4, m2·s) | ΔE/eV | Storage capacity /(mA h·g-1) |
---|---|---|---|---|
Li+ | 0.069 | 13.8 | -5.006 | 63 |
Na+ | 0.102 | 11.6 | -4.493 | 68 |
K+ | 0.138 | 7.3 | -5.601 | 53 |
Mg2+ | 0.066 | 22.8 | -7.282 | 97 |
Ca2+ | 0.099 | 19.6 | -2.092 | 99 |
Zn2+ | 0.074 | 8.6 | -5.540 | 220 |
La3+ | 0.106 | 11.1 | -10.019 | 101 |
Table 1 Detailed information of univalent and multivalent ions
Species | Diameter/nm | D/(×10-4, m2·s) | ΔE/eV | Storage capacity /(mA h·g-1) |
---|---|---|---|---|
Li+ | 0.069 | 13.8 | -5.006 | 63 |
Na+ | 0.102 | 11.6 | -4.493 | 68 |
K+ | 0.138 | 7.3 | -5.601 | 53 |
Mg2+ | 0.066 | 22.8 | -7.282 | 97 |
Ca2+ | 0.099 | 19.6 | -2.092 | 99 |
Zn2+ | 0.074 | 8.6 | -5.540 | 220 |
La3+ | 0.106 | 11.1 | -10.019 | 101 |
[1] | LUND H.Renewable energy strategies for sustainable development.Energy, 2007, 32(6): 912-919. |
[2] | DINCER I, ROSEN M A, Exergy: energy, environment and sustainable development, Newnes, 2012. |
[3] | ESPINOSA D C R, BERNARDES A M, TEN RIO J A S. An overview on the current processes for the recycling of batteries.Journal of Power Sources, 2004, 135(1): 311-319. |
[4] | ALIAS N, MOHAMAD A A.Advances of aqueous rechargeable lithium-ion battery: a review.Journal of Power Sources, 2015, 274: 237-251. |
[5] | OHMORI, SHIGEKAZU, YAMAMOTO, et al. Sodium Ion Battery. U.S. Patent Application.2010: 3-23. |
[6] | SUO L, BORODIN O, GAO T, et al.“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries.Science, 2015, 350(6263): 938-943. |
[7] | YAN J, WANG J, LIU H, et al.Rechargeable hybrid aqueous batteries.Journal of Power Sources, 2012, 216: 222-226. |
[8] | LUO J Y, CUI W J, HE P, et al.Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.Nat. Chem., 2010, 2(9): 760-765. |
[9] | XU C J, LI B, DU H, et al.Energetic zinc ion chemistry: the rechargeable zinc ion battery.Angew. Chem. Int. Ed. Engl., 2012, 51(4): 933-935. |
[10] | [LEE B, LEE H R, KIM H, et al.Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries.Chem. Commun.(Camb), 2015, 51(45): 9265-9268. |
[11] | MCBREEN J.Nickel/zinc batteries.Journal of Power Sources, 1994, 51(1/2): 37-44. |
[12] | LIU Y, YANG Z, XIE X, et al.Layered double oxides nano-flakes derived from layered double hydroxides: preparation, properties and application in zinc/nickel secondary batteries.Electrochimica Acta, 2015, 185: 190-197. |
[13] | SMITH D F, GUCINSKI J A.Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries.Journal of Power Sources, 1999, 80(1): 66-71. |
[14] | MOJTAHEDI M, GOODARZI M, SHARIFI B, et al.Effect of electrolysis condition of zinc powder production on zinc-silver oxide battery operation.Energy Conversion And Management, 2011, 52(4): 1876-1880. |
[15] | LIANG H W, WU Z Y, CHEN L F, et al.Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy, 2015, 11: 366-376. |
[16] | LI Y, GONG M, LIANG Y, et al.Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.Nature communications, 2013, 4: 1805. |
[17] | R MAINAR A, LEONET O, BENGOECHEA M, et al. Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview.International Journal of Energy Research, 2016. |
[18] | KANG F Y, CHENG J X,LI B, et al. Rechargeable Zinc Ion Battery. U.S., Patent 8663844. 2014.03.04. |
[19] | FORMANEK J, JANDOVA J, CAPEK J.Iron removal from zinc liquors originating from hydrometallurgical processing of spent Zn/MnO2 batteries.Hydrometallurgy, 2013, 138: 100-105. |
[20] | 杨敬东. 二次锌离子电池的制备及其性能研究. 江苏: 南京工业大学硕士学位论文, 2013. |
[21] | MCLARNON F R, CAIRNS E J.The secondary alkaline zinc electrode.Journal of The Electrochemical Society, 1991, 138(2): 645-656. |
[22] | LEE J, JU J B, CHO W I, et al.Todorokite-type MnO2 as a zinc-ion intercalating material.Electrochimica Acta, 2013, 112: 138-143. |
[23] | XU D, LI B, WEI C, et al.Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions.Electrochimica Acta, 2014, 133: 254-261. |
[24] | ALFARUQI M H, GIM J, SONG J, et al. Electrochemical reaction mechanism in a high capacity zinc-ion battery system.The Electrochemical Society, 2015(3): 285. |
[25] | TAFUR J P, ABAD J, ROM N E, et al.Charge storage mechanism of MnO2 cathodes in Zn/MnO2 batteries using ionic liquid-based gel polymer electrolytes.Electrochemistry Communications, 2015, 60: 190-194. |
[26] | FENG F, GENG M, NORTHWOOD D.Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review.International Journal of Hydrogen Energy, 2001, 26(7): 725-734. |
[27] | FETCENKO M, OVSHINSKY S, REICHMAN B, et al.Recent advances in NiMH battery technology.Journal of Power Sources, 2007, 165(2): 544-551. |
[28] | LI M, LIU J, HAN W.Recycling and management of waste lead-acid batteries: a mini-review.Waste Management & Research, 2016: 0734242X16633773. |
[29] | Y YAMAGUCHI, Lead Acid Batteries. Encyclopedia of Applied Electrochemistry. Springer New York, 2014: 1161-1165. |
[30] | MAI L, WEI Q, TIAN X, et al.Electrochemical nanowire devices for energy storage.Nanotechnology, 2014, 13(1): 10-15. |
[31] | AN Q, WEI Q, ZHANG P, et al.Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries.Small, 2015, 11(22): 2654-2660. |
[32] | ZHAO Y, FENG J, LIU X, et al.Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene.Nat. Commun., 2014, 5: 4565. |
[33] | ZHANG L, LIU Y, CHEN C, et al.Research on electrode materials for sodium-ion batteries.Chinese Journal of Inorganic Chemistry, 2015, 31(9): 1739-1750. |
[34] | JUNG J W, LEE C L, YU S, et al.Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review.J. Mater. Chem. A, 2016, 4(3): 703-750. |
[35] | LUO W, SHEN F, BOMMIER C, et al.Na-ion battery anodes: materials and electrochemistry.Acc Chem Res, 2016, 49(2): 231-240. |
[36] | BERTIN F C H, ESPINOSA D C R, TEN RIO J A S. 10.1 Nickel-Cadmium (NiCd) Batteries. Electronic Waste: Recycling Techniques, 2015: 129. |
[37] | GALUSHKIN N, YAZVINSKAYA N, GALUSHKIN D.Ni-Cd batteries as hydrogen storage units of high-capacity.ECS Electrochemistry Letters, 2013, 2(1): A1-A2. |
[38] | MAI L, TIAN X, XU X, et al.Nanowire electrodes for electrochemical energy storage devices.Chemical Reviews, 2014, 114(23): 11828-11862. |
[39] | TAFUR J P, ABAD J, ROM N E, et al.Charge storage mechanism of MnO2 cathodes in Zn/MnO2 batteries using ionic liquid-based gel polymer electrolytes.Electrochemistry Communications, 2015, 60: 190-194. |
[40] | 章小鸽, 仲海峰, 程东妹, 等. 锌的腐蚀与电化学, 冶金工业出版社, 2008: 3-6 441-443. |
[41] | LASKA C A, AUINGER M, BIEDERMANN P U, et al.Effect of hydrogen carbonate and chloride on zinc corrosion investigated by a scanning flow cell system.Electrochimica Acta, 2015, 159: 198-209. |
[42] | 李洪飞. 锌离子电池锌负极材料的制备及性能研究. 北京: 清华大学硕士学位论文, 2012. |
[43] | ZHU X, DOAN T N L, YU Y, et al. Enhancing rate performance of LiMn2O4 cathode in rechargeable hybrid aqueous battery by hierarchical carbon nanotube/acetylene black conductive pathways.Ionics, 2015, 22(1): 71-76. |
[44] | TAO B W, LIU J, LI S, et al.Electrochemical properties of V2O5/C composite in aqueous solution used for zinc secondary battery.Acta Physico-Chimica Sinica, 2005, 21(3): 338-342. |
[45] | LI H, XU C, HAN C, et al.Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries.Journal of The Electrochemical Society, 2015, 162(8): A1439-A1444. |
[46] | 屠振密, 李宁, 胡会利, 等.电沉积纳米晶材料技术. 国防工业出版社, 2008: 24-36. |
[47] | LANG J, FU Q.Development of zinc electrodes for secondary akaline batteries.Marine Electric & Electronic Engineering, 2010, 30(7): 47-50. |
[48] | 崔存仓. 锌-空气电池空气电极的制备及研究. 黑龙江: 哈尔滨工业大学硕士学位论文, 2013. |
[49] | NEBURCHILOV V, WANG H, MARTIN J J, et al.A review on air cathodes for zinc-air fuel cells.Journal of Power Sources, 2010, 195(5): 1271-1291. |
[50] | YANG H, CAO Y, AI X, et al.Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives.Journal of Power Sources, 2004, 128(1): 97-101. |
[51] | XU M, IVEY D, QU W, et al.Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide.Journal of Power Sources, 2015, 274: 1249-1253. |
[52] | 蒋巍. 空气电池锌电极的制备与研究. 河北: 河北工业大学硕士学位论文, 2005. |
[53] | DEMIRKRAN N.Copper cementation with zinc recovered from spent zinc-carbon batteries and dissolution of cement copper in hydrochloric acid solutions.Industrial & Engineering Chemistry Research, 2013, 52(24): 8157-8166. |
[54] | NINDHIA T G T, SURATA I W, SWASTIKA I D G P, et al. Reuse of carbon paste from used zinc-carbon battery for biogas desulfurizer with clay as a binder.International Journal of Environmental Science and Development, 2016, 7(3): 203-206. |
[55] | XIA Y, ZHU D, SI S, et al.Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance.Journal of Power Sources, 2015, 283: 125-131. |
[56] | ZHOU J, XUE K, PAN G.AC impedance study of the aqueous Zn/V2O5 secondary battery.Acta Physico-Chimica Sinica, 2000, 16(5): 454-458. |
[57] | GUISAO J P T, ROMERO A J F. Interaction between Zn2+ cations and n-methyl-2-pyrrolidone in ionic liquid-based gel polymer electrolytes for Zn batteries.Electrochimica Acta, 2015, 176: 1447-1453. |
[58] | WANG K, GAO S, DU Z, et al.MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance.Journal of Power Sources, 2016, 305: 30-36. |
[59] | 魏春光. 二氧化锰的隧道调控和电化学离子存储性能研究. 北京: 清华大学博士学位论文, 2013. |
[60] | INGALE N D, GALLAWAY J W, NYCE M, et al.Rechargeability and economic aspects of alkaline zinc-manganese dioxide cells for electrical storage and load leveling.Journal of Power Sources, 2015, 276: 7-18. |
[61] | CHEN Y, XU C, SHI S.Manganese dioxides nanosheets/graphene as the zinc-ion intercalating materials for high capacity zinc ion battery. Contemporary Chemical Industry, 2015, 44(6): 1197-1199. |
[62] | YIN Y, LIU C, FAN S.A new type of secondary hybrid battery showing excellent performances.Nano Energy, 2015, 12: 486-493. |
[63] | ALFARUQI M H, MATHEW V, GIM J, et al.Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-Ion battery system.Chemistry of Materials, 2015, 27(10): 3609-3620. |
[64] | STANI A, TAUCHER-MAUTNER W, KORDESCH K, et al.Development of flat plate rechargeable alkaline manganese dioxide-zinc cells.Journal of Power Sources, 2006, 153(2): 405-412. |
[65] | CHENG F Y, CHEN J, GOU X L, et al.High-power alkaline zn-mno2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic Zinc powder.Advanced Materials, 2005, 17(22): 2753-2756. |
[66] | XU C, CHEN Y, SHI S, et al.Secondary batteries with multivalent ions for energy storage.Sci. Rep., 2015, 5: 14120. |
[67] | XU C, CHIANG S W, MA J, et al.Investigation on zinc ion storage in alpha manganese dioxide for zinc ion battery by electrochemical impedance spectrum.Journal of the Electrochemical Society, 2013, 160(1): A93-A97. |
[68] | LEE B, YOON C S, LEE H R, et al.Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide.Sci Rep, 2014, 4: 6066. |
[69] | JIA Z, WANG B, WANG Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Materials Chemistry And Physics, 2015, 149- 150: 601-606. |
[70] | ZHANG L, CHEN L, ZHOU X, et al.Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery.Sci. Rep., 2015, 5: 18263. |
[71] | PASTA M, WESSELLS C D, LIU N, et al.Full open-framework batteries for stationary energy storage.Nat. Commun., 2014, 5: 3007. |
[72] | WESSELLS C D, HUGGINS R A, CUI Y.Copper hexacyanoferrate battery electrodes with long cycle life and high power.Nature communications, 2011, 2: 550. |
[73] | TROCOLI R, LA MANTIA F.An aqueous zinc-ion battery based on copper hexacyanoferrate.ChemSusChem, 2015, 8(3): 481-485. |
[74] | GUPTA T, KIM A, PHADKE S, et al.Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate.Journal of Power Sources, 2016, 305: 22-29. |
[75] | ZHANG L, CHEN L, ZHOU X, et al.Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system.Advanced Energy Materials, 2015, 5(2): 1614-6840. |
[76] | PAN J, WEN Y, CHENG J, et al.Zinc deposition and dissolution in sulfuric acid onto a graphite-resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteries.Journal of Applied Electrochemistry, 2013, 43(5): 541-551. |
[77] | PADIGI P, THIEBES J, SWAN M, et al.Prussian green: a high rate capacity cathode for potassium ion batteries.Electrochimica Acta, 2015, 166: 32-39. |
[78] | MULDOON J, BUCUR C B, GREGORY T.Quest for nonaqueous multivalent secondary batteries: magnesium and beyond.Chemical Reviews, 2014, 114(23): 11683-11720. |
[79] | LIN M C, GONG M, LU B, et al.An ultrafast rechargeable aluminium-ion battery.Nature, 2015, 520(7547): 325-328. |
[80] | PADIGI P, GONCHER G, EVANS D, et al.Potassium barium hexacyanoferrate -a potential cathode material for rechargeable calcium ion batteries.Journal of Power Sources, 2015, 273: 460-464. |
[81] | KOMABA S, HASEGAWA T, DAHBI M, et al.Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors.Electrochemistry Communications, 2015, 60: 172-175. |
[82] | XU C, WEI C, LI B, et al.Charge storage mechanism of manganese dioxide for capacitor application: effect of the mild electrolytes containing alkaline and alkaline-earth metal cations.Journal of Power Sources, 2011, 196(18): 7854-7859. |
[83] | NAYAK P K, MUNICHANDRAIAH N.Reversible insertion of a trivalent cation onto MnO2 leading to enhanced capacitance.Journal of The Electrochemical Society, 2011, 158(5): A585-A591. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||