无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 596-602.DOI: 10.15541/jim20210437
收稿日期:
2021-07-13
修回日期:
2021-08-25
出版日期:
2022-06-20
网络出版日期:
2021-08-20
通讯作者:
欧阳俊, 男, 教授. E-mail: ouyangjun@qlu.edu.cn作者简介:
赵玉垚(1994-), 男, 博士研究生. E-mail: zhaoyuyao920606@163.com
基金资助:
ZHAO Yuyao1(), OUYANG Jun1,2(
)
Received:
2021-07-13
Revised:
2021-08-25
Published:
2022-06-20
Online:
2021-08-20
Contact:
OUYANG Jun, male, professor. E-mail: ouyangjun@qlu.edu.cnAbout author:
ZHAO Yuyao (1994–), male, PhD candidate. E-mail: zhaoyuyao920606@163.com
Supported by:
摘要:
钛酸钡(BaTiO3)具有优异的介电、铁电、压电和热释电等性能, 在微电子机械系统和集成电路领域具有广泛的应用。降低BaTiO3薄膜的制备温度使其与现有的CMOS-Si工艺兼容, 已成为应用研究和技术开发中亟需解决的问题。本研究引入与BaTiO3晶格常数相匹配的LaNiO3作为缓冲层, 以调控其薄膜结晶取向, 在单晶Si(100)基底上450 ℃溅射制备了结构致密的柱状纳米晶BaTiO3薄膜。研究表明:450 ℃溅射温度在保持连续柱状晶结构和(001)择优取向的前提下, 能获得相对较大的柱状晶粒(平均晶粒直径27 nm), 一定残余应变也有助于其获得了较好的铁电和介电性能。剩余极化强度和最大极化强度分别达到了7和43 μC·cm-2。该薄膜具有良好的绝缘性, 在 0.8 MV·cm-1电场下, 漏电流密度仅为10-5 A·cm-2。其相对介电常数εr展现了优异的频率稳定性:在1 kHz时εr为155, 当测试频率升至1 MHz, εr仅轻微降低至145。薄膜的介电损耗较小, 约为0.01~0.03 (1 kHz ~ 1 MHz)。通过电容-电压测试, 该薄膜材料展示出高达51%的介电调谐率, 品质因子亦达到17(@1 MHz)。本研究所获得的BaTiO3薄膜在介电调谐器件中有着良好的应用前景。
中图分类号:
赵玉垚, 欧阳俊. 硅片上集成高介电调谐率的柱状纳米晶BaTiO3铁电薄膜[J]. 无机材料学报, 2022, 37(6): 596-602.
ZHAO Yuyao, OUYANG Jun. Columnar Nanograined BaTiO3 Ferroelectric Thin Films Integrated on Si with a Sizable Dielectric Tunability[J]. Journal of Inorganic Materials, 2022, 37(6): 596-602.
图1 BaTiO3薄膜的物相结构分析
Fig. 1 Phase structure analyses of BaTiO3 films (a) XRD patterns of BaTiO3 films deposited at different temperatures; (b) Magnified area near BaTiO3(002)/LaNiO3(200) peaks from (a) with inset showing XRD patterns over 20°-50° at a low scanning rate (1 (°)/min)
图2 (a-c) 450 ℃和(d-f) 500 ℃沉积BaTiO3薄膜的纳米结构
Fig. 2 Nanostructures of BaTiO3 films deposited at (a-c) 450 ℃ and (d-f) 500 ℃ (a-c) 450 ℃-deposited BaTiO3 film: (a) Low magnification cross-sectional TEM image; (b) Low-resolution TEM image of the interface between LaNiO3 and BaTiO3; (c) High-resolution TEM image of the interface between LaNiO3 and BaTiO3 with the yellow dashed line showing the interface of LaNiO3/BaTiO3, while the white dashed lines showing a conformally grown BaTiO3 nanograin from its interface with LaNiO3 (d-f) 500 ℃-deposited BaTiO3 film: (d) Low magnification cross-sectional TEM image; (e) Low-resolution TEM image of the interface between LaNiO3 and BaTiO3; (f) High-resolution TEM image of the interface between LaNiO3 and BaTiO3 with the yellow dashed line showing the interface of LaNiO3/BaTiO3
图3 BaTiO3薄膜的电学性能
Fig. 3 Electrical performance of BaTiO3 films (a) Standard P-E hysteresis loops; (b) The maximum polarization (Pm) and self-polarization (PS), as well as Pm-Ps of the BaTiO3 films as functions of the applied electric field; (c) Small-field (Vp-p=1 V) dielectric constant and loss tangent as functions of the measuring frequency (εr-f and tanδ-f); (d) Leakage current density vs the applied DC electric field
图4 BaTiO3薄膜的介电调谐性能
Fig. 4 Dielectric tunability performance of the BaTiO3 films Dielectric constant (εr) as a function of E from (a) P-E and (b) C-V test results with loss tangent as a function of E; (c) Dielectric tunability and figure of merit as functions of E with data points were taken from (b); (d) Comparison with other leading ferroelectric films in dielectric tunability and deposition temperature
[1] |
TAGANTSEV A K, SHERMAN V O, ASTAFIEV K F, et al. Ferroelectric materials for microwave tunable applications. Journal of Electroceramics, 2003, 11(1/2): 5-66.
DOI URL |
[2] |
MIN H K, KIM T Y, SEUNG E M, et al. Microwave properties of Mn doped (Ba1-x, Srx)TiO3thin films for tunable phase shifter. Integrated FerroeLectrics, 2004, 66(1): 283-289.
DOI URL |
[3] | HARIBABU P, MAHESH P, HWANG G T, et al. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Advanced Functional Materials, 2018, 28(42): 1803665. |
[4] |
NIU G, YIN S, SAINT-GIRONS G, et al. Epitaxy of BaTiO3 thin film on Si (001) using a SrTiO3 buffer layer for non-volatile memory application. Microelectronic Engineering, 2011, 88(7): 1232-1235.
DOI URL |
[5] |
GAO T, LIAO J J, WANG J S, et al. Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. Journal of Materials Chemistry A, 2015, 3(18): 9965-9971.
DOI URL |
[6] |
ZHANG W, CHENG H B, YANG Q, et al. Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films. Ceramics International, 2016, 42(3): 4400-4405.
DOI URL |
[7] | ZHAO J Y, CHEN H W, WEI M, et al. Effects of Bi2O3, Sm2O3 content on the structure, dielectric properties and dielectric tunability of BaTiO3 ceramics. Journal of Materials Science, 2019, 30(21): 19279-19288. |
[8] |
ZHU C Q, WANG X H, ZHAO Q C, et al. Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics. Journal of the European Ceramic Society, 2019, 39(4): 1142-1148.
DOI URL |
[9] |
GAO L N, ZHAO J W, YAO X. Low dielectric loss and enhanced tunability of Ba(Zr0.3Ti0.7)O3-based thin film by Sol-Gel method. Ceramics International, 2008, 34(4): 1023-1026.
DOI URL |
[10] |
ZHANG H F, GIDDEN H, SAUNDERS T G, et al. High tunability and low loss in layered perovskite dielectrics through intrinsic elimination of oxygen vacancies. Chemistry of Materials, 2020, 32(23): 10120-10129.
DOI URL |
[11] |
SREENIVAS P, PRADHAN D, PEREZ W, et al. Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT-BCT ceramic capacitors. Journal of Physics and Chemistry of Solids, 2013, 74(3): 466-475.
DOI URL |
[12] |
PENG B L, ZHANG Q, LI X, et al. High dielectric tunability, electrostriction strain and electrocaloric strength at a tricritical point of tetragonal, rhombohedral and pseudocubic phases. Journal of Alloys and Compounds, 2015, 646(15): 597-602.
DOI URL |
[13] | SANGLE A L, LEE O J, KURSUMOVIC A, et al. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO3 thin films with Tc enhanced to >300 ℃. Nanoscale, 2018, 10(7): 2460-3468. |
[14] |
HAO L X, YANG Y L, HUAN Y, et al. Achieving a high dielectric tunability in strain-engineered tetragonal K0.5Na0.5NbO3 films. npj Computational Materials, 2021, 7(1): 62.
DOI URL |
[15] |
CHEN H W, YANG C R, FU C L, et al. The size effect of Ba0.6Sr0.4TiO3 thin films on the ferroelectric properties. Applied Surface Science, 2006, 252(12): 4171-4177.
DOI URL |
[16] |
GAO Y Q, YUAN M L, SUN X, et al. In situ preparation of high quality BaTiO3 dielectric films on Si at 350-500 ℃. Journal of Materials Science: Materials in Electronics, 2016, 28(1): 337-343.
DOI URL |
[17] |
ZHAO Y Y, OUYANG J, WANG K, et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Storage Materials, 2021, 39: 81-88.
DOI URL |
[18] |
RAYMOND M V, SMYTH D M. Defects and charge transport in perovskite ferroelectrics. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1507-1511.
DOI URL |
[19] |
CHOI K J, BIEGALSKI M, LI Y L, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698): 1005-1009.
DOI URL |
[20] | WANG K, ZHANG Y, WANG S X, et al. High energy performance ferroelectric (Ba,Sr)(Zr,Ti)O3 film capacitors integrated on Si at 400 ℃. ACS Applied Materials& Interface, 2021, 13: 22717-22727. |
[21] | MILTON O. Materials Science of Thin Films. Academic Press, 2002. |
[22] |
CAI Z M, WANG X H, HONG W, et al. Grain-size- dependent dielectric properties in nanograin ferroelectrics. Journal of the American Ceramic Society, 2018, 101(12): 5487-5496.
DOI URL |
[23] | CHENG J G, MENG X J, TANG J, et al. Effects of individual layer thickness on the structure and electrical properties of Sol-Gel- derived Ba0.8Sr0.2TiO3 thin films. Journal of the Ceramic Society, 2000, 83(10): 2616-2618. |
[24] |
LIU S W, WEAVER J, YUAN Z, et al. Ferroelectric (Pb,Sr)TiO3 epitaxial thin films on (001)MgO for room temperature high- frequency tunable microwave elements. Applied Physics Letters, 2005, 87(14): 142905.
DOI URL |
[25] |
WU Z, ZHOU J, CHEN W, et al. Improvement in temperature dependence and dielectric tenability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer. Applied Surface Science, 2016, 388: 579-583.
DOI URL |
[26] |
DONG H T, JIAN J, LI H F, et al. Improved dielectric tunability of PZT/BST multilayer thin films on Ti substrates. Journal of Alloys and Compounds, 2017, 725: 54-59.
DOI URL |
[27] |
ZHENG Z, YAO Y Y, WENG W J, et al. High dielectric tunability of (100) oriented PbxSr1-xTiO3 thin film coordinately controlled by dipole activation and phase anisotropy. Journal of Applied Physics, 2011, 110(12): 124107.
DOI URL |
[28] |
TAKEDA K, MURAISHI T, HOSHINA T, et al. Dielectric tunability and electro-optic effect of Ba0.5Sr0.5TiO3 thin films. Journal of Applied Physics, 2010, 107(7): 074105.
DOI URL |
[29] |
GAO L B, JIANG S W, LI R G. Effect of sputtering pressure on structure and dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering. Thin Solid Films, 2016, 603: 391-394.
DOI URL |
[30] |
ZHAI J W, YAO X, ZHANG L Y, et al. Dielectric nonlinear characteristics of BaZr0.35Ti0.65O3 thin films grown by a Sol-Gel process. Applied Physics Letters, 2004, 84(16): 3136-3138.
DOI URL |
[1] | 盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990. |
[2] | 王红宁, 黄丽, 清江, 马腾洲, 黄维秋, 陈若愚. 有机-无机氧化硅空心球的合成及VOCs吸附应用[J]. 无机材料学报, 2022, 37(9): 991-1000. |
[3] | 宿拿拿, 韩静茹, 郭印毫, 王晨宇, 石文华, 吴亮, 胡执一, 刘婧, 李昱, 苏宝连. 基于ZIF-8的三维网络硅碳复合材料锂离子电池性能研究[J]. 无机材料学报, 2022, 37(9): 1016-1022. |
[4] | 付师, 杨增朝, 李宏华, 王良, 李江涛. 复合烧结助剂对Si3N4陶瓷力学性能和热导率的影响[J]. 无机材料学报, 2022, 37(9): 947-953. |
[5] | 张叶, 曾宇平. 自蔓延高温合成氮化硅多孔陶瓷的研究进展[J]. 无机材料学报, 2022, 37(8): 853-864. |
[6] | 韦婷婷, 徐华蕊, 朱归胜, 龙神峰, 张秀云, 赵昀云, 江旭鹏, 宋金杰, 郭宁杰, 龚祎鹏. BaTiO3陶瓷的低温冷烧结制备及性能研究[J]. 无机材料学报, 2022, 37(8): 903-910. |
[7] | 欧阳琴, 王艳菲, 徐剑, 李寅生, 裴学良, 莫高明, 李勉, 李朋, 周小兵, 葛芳芳, 张崇宏, 何流, 杨磊, 黄政仁, 柴之芳, 詹文龙, 黄庆. 核用碳化硅纤维增强碳化硅复合材料研究进展[J]. 无机材料学报, 2022, 37(8): 821-840. |
[8] | 庞力斌, 王德平. 介孔硼硅酸盐玻璃微球药物载体的制备及其性能表征[J]. 无机材料学报, 2022, 37(7): 780-786. |
[9] | 魏子钦, 夏翔, 李勤, 李国荣, 常江. 钛酸钡/硅酸钙复合生物活性压电陶瓷的制备及性能研究[J]. 无机材料学报, 2022, 37(6): 617-622. |
[10] | 阮景, 杨金山, 闫静怡, 游潇, 王萌萌, 胡建宝, 张翔宇, 丁玉生, 董绍明. 三维碳化硅纳米线增强碳化硅陶瓷基复合材料的电磁屏蔽性能[J]. 无机材料学报, 2022, 37(5): 579-584. |
[11] | 阮景, 杨金山, 闫静怡, 游潇, 王萌萌, 胡建宝, 张翔宇, 丁玉生, 董绍明. 碳化硅纳米线增强多孔碳化硅陶瓷基复合材料的制备[J]. 无机材料学报, 2022, 37(4): 459-466. |
[12] | 马慧, 陶疆辉, 王艳妮, 韩玉, 王亚斌, 丁秀萍. 硅钛杂化介孔球负载金纳米粒子及其催化性能调控[J]. 无机材料学报, 2022, 37(4): 404-412. |
[13] | 李萌, 黄海露, 吴甲民, 刘春磊, 吴亚茹, 张景贤, 史玉升. 浆料固相含量对数字光处理成形Si3N4陶瓷性能的影响[J]. 无机材料学报, 2022, 37(3): 310-316. |
[14] | 马玲玲, 常江. Nd掺杂硅酸钙及其复合电纺丝膜的制备及性能研究[J]. 无机材料学报, 2021, 36(9): 974-980. |
[15] | 李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安. 源于溪木贼的高性能锂离子电池三维多孔生物质硅/碳复合负极材料[J]. 无机材料学报, 2021, 36(9): 929-935. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||