无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 585-595.DOI: 10.15541/jim20210358

所属专题: 【虚拟专辑】增材制造及3D打印(2021-2022) 2022年度中国知网高下载论文

• 综述 •    下一篇

增材制造压电陶瓷研究进展

南博1,2(), 臧佳栋3, 陆文龙3, 杨廷旺3, 张升伟3, 张海波1,2()   

  1. 1.华中科技大学 材料科学与工程学院, 材料成形与模具技术国家重点实验室, 武汉 430074
    2.广东华中科技大学 工业技术研究院, 东莞 523808
    3.深圳市基克纳科技有限公司, 深圳 518100
  • 收稿日期:2021-06-07 修回日期:2021-08-18 出版日期:2022-06-20 网络出版日期:2021-11-01
  • 通讯作者: 张海波, 教授. E-mail: hbzhang@hust.edu.cn
  • 作者简介:南 博(1989-), 男, 博士. E-mail: bonan@hust.edu.cn
  • 基金资助:
    广东华中科技大学工业技术研究院广东省制造装备数字化重点实验室(2020B1212060014);东莞市引进创新科研团队计划(2020607101007)

Recent Progress on Additive Manufacturing of Piezoelectric Ceramics

NAN Bo1,2(), ZANG Jiadong3, LU Wenlong3, YANG Tingwang3, ZHANG Shengwei3, ZHANG Haibo1,2()   

  1. 1. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    2. Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, China
    3. Shenzhen Geekvape Technology Co., Ltd., Shenzhen 518100, China
  • Received:2021-06-07 Revised:2021-08-18 Published:2022-06-20 Online:2021-11-01
  • Contact: ZHANG Haibo, professor. E-mail: hbzhang@hust.edu.cn
  • About author:NAN Bo (1989-), male, PhD. E-mail: bonan@hust.edu.cn

摘要:

压电陶瓷是一种可以实现机械信号和电信号相互转换的功能陶瓷。由压电陶瓷与有机相构成的复合材料具有不同的宏观连接方式, 这不仅决定了压电器件广泛的应用场合, 而且推动了压电陶瓷材料和器件多样化的成型技术发展。与传统成型技术相比, 增材制造技术的最大优势在于无需模具即可实现外形复杂的小批量样品快速成型, 这与多样化的压电陶瓷及其器件研发需求十分契合, 同时因其样品后续加工量少、原材料利用率高、无需切削液的特点, 得到了学术界和工业界的广泛关注。在陶瓷材料增材制造领域, 功能陶瓷和器件的研究仍在增长期。本文从不同增材制造技术角度, 探讨和对比现阶段无铅和含铅压电陶瓷增材制造的发展历史、原料制备、外形设计、功能特性检测及试样的应用, 并根据现阶段各增材制造技术的优、劣势对其未来进行了展望。

关键词: 增材制造, 含铅压电陶瓷, 无铅压电陶瓷, 功能特性, 综述

Abstract:

Piezoelectric ceramic is a type of functional ceramic, which is able to convert the mechanical signal and the electronic signal mutually. Composed of piezoelectric ceramics and organic phase, piezoelectric composites have different kinds of connectivities, which not only determine the diverse applications of piezoelectric devices, but also promote the development of various shaping techniques in manufacturing piezoelectric materials and devices. In comparison with the traditional shaping methods, the most distinguishable advantage of additive manufacturing lies in its ability of quickly shaping a small batch of samples into geometrically complex designs without a mould, which makes it a highly suitable technique for investigating piezoelectric ceramics and its derivative devices in different kinds of connectivities. Meanwhile, the final additively manufactured samples require only tiny post-processing, have a high rate of utilization of the raw material and do not need cutting fluid during manufacturing. Due to the above-mentioned advantages, it attracts the widespread concerns from both academic and industrial communities. When focusing in the field of additive manufacturing ceramics, the data of scientific reports in additive manufacturing functional ceramics and devices prove that it is still in a growing period. In the perspective of different additive manufacturing techniques, this article discusses and compares additive manufacturing of both lead-free and lead-based piezoelectric ceramics in the aspects of their historical development of each technique, preparation of the raw materials, geometrical designs, measurement of functional properties, and applications of the printed samples, and forecasts the future development based on the current benefits and drawbacks of each additive manufacturing technique.

Key words: additive manufacturing, lead-based piezoceramics, lead-free piezoceramics, functional property, review

中图分类号: