无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 585-595.DOI: 10.15541/jim20210358 CSTR: 32189.14.10.15541/jim20210358
所属专题: 【制备方法】3D打印(202409); 2022年度中国知网高下载论文
• 综述 • 下一篇
南博1,2(), 臧佳栋3, 陆文龙3, 杨廷旺3, 张升伟3, 张海波1,2(
)
收稿日期:
2021-06-07
修回日期:
2021-08-18
出版日期:
2022-06-20
网络出版日期:
2021-11-01
通讯作者:
张海波, 教授. E-mail: hbzhang@hust.edu.cn作者简介:
南 博(1989-), 男, 博士. E-mail: bonan@hust.edu.cn
基金资助:
NAN Bo1,2(), ZANG Jiadong3, LU Wenlong3, YANG Tingwang3, ZHANG Shengwei3, ZHANG Haibo1,2(
)
Received:
2021-06-07
Revised:
2021-08-18
Published:
2022-06-20
Online:
2021-11-01
Contact:
ZHANG Haibo, professor. E-mail: hbzhang@hust.edu.cnAbout author:
NAN Bo (1989-), male, PhD. E-mail: bonan@hust.edu.cn
摘要:
压电陶瓷是一种可以实现机械信号和电信号相互转换的功能陶瓷。由压电陶瓷与有机相构成的复合材料具有不同的宏观连接方式, 这不仅决定了压电器件广泛的应用场合, 而且推动了压电陶瓷材料和器件多样化的成型技术发展。与传统成型技术相比, 增材制造技术的最大优势在于无需模具即可实现外形复杂的小批量样品快速成型, 这与多样化的压电陶瓷及其器件研发需求十分契合, 同时因其样品后续加工量少、原材料利用率高、无需切削液的特点, 得到了学术界和工业界的广泛关注。在陶瓷材料增材制造领域, 功能陶瓷和器件的研究仍在增长期。本文从不同增材制造技术角度, 探讨和对比现阶段无铅和含铅压电陶瓷增材制造的发展历史、原料制备、外形设计、功能特性检测及试样的应用, 并根据现阶段各增材制造技术的优、劣势对其未来进行了展望。
中图分类号:
南博, 臧佳栋, 陆文龙, 杨廷旺, 张升伟, 张海波. 增材制造压电陶瓷研究进展[J]. 无机材料学报, 2022, 37(6): 585-595.
NAN Bo, ZANG Jiadong, LU Wenlong, YANG Tingwang, ZHANG Shengwei, ZHANG Haibo. Recent Progress on Additive Manufacturing of Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2022, 37(6): 585-595.
图1 压电陶瓷的连接方式与常用于压电陶瓷的增材制造技术示意图
Fig. 1 Connectivities of piezoelectric ceramics and schematic pictures of common AM techniques applied for preparing piezoelectric ceramics (a) 10 types of connectivitities in bi-phase composites[10]; (b) Vat photopolymerization[18]; (c) Direct ink writing[21]; (d) Inkjet printing[23]; (e) Fused deposition modelling[26]; (f) Binder jetting[29]
AM techniques | Advantages | Disadvantages | Ingredients of raw materials | Binder system | Ref. |
---|---|---|---|---|---|
Vat photo- polymerization (VP) | Low surface roughness, high printing accuracy | High cost of ceramic paste and machine, low degree of open source | Photosensitive polymer + ceramic powder/ceramic precursor | Photosensitive polymer | [ |
Direct ink writing (DIW) | Open source, multi-materials printing | Clogging of nozzles, high surface roughness | Powder + polymer solution (high viscosity)/ceramic precursor | Water/oil based | [ |
Inkjet printing (IP) | Open source, high printing accuracy | Low solids loading, easy precipitation of the particles | Powder + polymer solution (low viscosity)/ceramic precursor | Water/oil based | [ |
Fused deposition modelling (FDM) | Open source, low cost of the machine | Low relative density, low accuracy | Ceramic powder + polymer (filament) | Thermal plastic polymers | [ |
Binder jetting (BJ) | High quality, gradient materials | High cost of machine, reuse of the powder bed | Powder bed + polymer solution | Water/oil based | [ |
表1 陶瓷增材制造技术的优缺点和原材料成分对比
Table 1 Comparison of advantages and disadvantages and composition of the feedstocks among several AM techniques applied in ceramics
AM techniques | Advantages | Disadvantages | Ingredients of raw materials | Binder system | Ref. |
---|---|---|---|---|---|
Vat photo- polymerization (VP) | Low surface roughness, high printing accuracy | High cost of ceramic paste and machine, low degree of open source | Photosensitive polymer + ceramic powder/ceramic precursor | Photosensitive polymer | [ |
Direct ink writing (DIW) | Open source, multi-materials printing | Clogging of nozzles, high surface roughness | Powder + polymer solution (high viscosity)/ceramic precursor | Water/oil based | [ |
Inkjet printing (IP) | Open source, high printing accuracy | Low solids loading, easy precipitation of the particles | Powder + polymer solution (low viscosity)/ceramic precursor | Water/oil based | [ |
Fused deposition modelling (FDM) | Open source, low cost of the machine | Low relative density, low accuracy | Ceramic powder + polymer (filament) | Thermal plastic polymers | [ |
Binder jetting (BJ) | High quality, gradient materials | High cost of machine, reuse of the powder bed | Powder bed + polymer solution | Water/oil based | [ |
图2 不同形状的压电陶瓷BT阵列[39]
Fig. 2 Piezoelectric BT arrays with different shapes[39] (a) Dot array; (b-c) Square arrays with different sized void spaces; (d) Honeycomb array
图3 可调节压电常数的压电超材料设计[44]
Fig. 3 Design of piezoelectric metamaterials for tailorable piezoelectric charge constants[44] (a-g): Node unit designs from 3-, 4-, 5- and 8-strut identical projection patterns, respectively; (h) Node unit with dissimilar projection patterns showing decoupled $\bar{d}_{31}$, $\bar{d}_{32}$; (i) Dimensionless piezoelectric anisotropy design space accommodating different 3D node unit designs with distinct d3M distributions
图4 直写式打印压电陶瓷材料的宏观、微观形貌及应用
Fig. 4 Macrostructure, microstructure and application of piezoelectric ceramics prepared by direct ink writing (a-c) PZT in 3-3, 3-2 and 3-1 connectivity (upper and lower pictures show the surface and cross-section of the sample, respectively)[56]; (d) Linear and annular samples with a size bar of 5 mm; (e) Cross-section of LA-2 in (d)[57]; (f) Captured image of 12 LEDs driven by the capacitor charged by KNN/PDMS[59]; (g) Alizarin Red staining of BST/40% β-TCP composite, indicating the maximum mineral deposition with a good biomineralization activity[65]
图5 喷墨打印柱状阵列高度差异[71]
Fig. 5 Different heights of pillar arrays made by ink-jet printing[71] (a) Sample printed in 1000 layers; (b) Sample printed in 4000 layers
图6 熔融沉积成型的部分样品的宏观、微观形貌
Fig. 6 Macrostructures and microstructures of samples prepared by fused deposition modelling (a) 3-3 porous ladder sample[85]; (b) Wax mould[85]; (c) 1-3 pillar arrays made by lost mould process (mould in (b))[85]; (d) 2-2 linear sample[86]; (e) Left showing 2-2 annular ring and right showing 3-3 ladder structures[85]
Material | AM techniques | Connectivities | εr | tanδ | Poling conditions | d33/(pC·N-1) | kt | Ref. |
---|---|---|---|---|---|---|---|---|
BT | VP | 1-3 | 1350 | - | 30 kV·cm-1, 100 ℃ 30 min | 160 | 0.474 | [ |
BT | VP | 1-3 | 920 | 0.07 | 2 V·μm-1, 120 ℃ 30 min | 87 | 0.3 | [ |
PZT | VP | 1-3 | 1040 | 0.020 | 30-40 kV·cm-1, 70 ℃ 15 min, silicone oil | 345 | 0.53 | [ |
PZT | DIW | Concentric ring | 1081 | - | 25 kV·cm-1, room temperature 30 min | 496 | - | [ |
KNN | DIW | 3-3 | 1775 | - | 2.5 kV·mm-1, 100 ℃ 20 min, silicone oil | 280 | - | [ |
BT | DIW | Bulk | 4730 | 0.033 | 0.66 MV·m-1, 80 ℃ 15 h, silicon oil | 200 | - | [ |
BCZT | DIW | 3-3 | 1046 | 0.021 | 3 kV·mm-1, room temperature 30 min, silicon oil | (100±4) | - | [ |
Nb-PZT | IP | 2-2 | ~700 | ~0.04 | 4 kV·mm-1, 120 ℃ 40 min, silicon oil | - | 0.46 | [ |
PZT | FDM | 3-3 | 700 | - | 25 kV, 70 ℃ 15-20 min, Corona technique | (290±10) | 0.5 | [ |
PZT | FDM | 2-2 | 627 | 0.023 | 26 kV, 60 ℃ 15 min, Corona technique | (397±16) | 0.68, 0.32(kp) | [ |
表2 增材制造压电陶瓷功能性能
Table 2 Functional properties of piezoelectric ceramics made by AM
Material | AM techniques | Connectivities | εr | tanδ | Poling conditions | d33/(pC·N-1) | kt | Ref. |
---|---|---|---|---|---|---|---|---|
BT | VP | 1-3 | 1350 | - | 30 kV·cm-1, 100 ℃ 30 min | 160 | 0.474 | [ |
BT | VP | 1-3 | 920 | 0.07 | 2 V·μm-1, 120 ℃ 30 min | 87 | 0.3 | [ |
PZT | VP | 1-3 | 1040 | 0.020 | 30-40 kV·cm-1, 70 ℃ 15 min, silicone oil | 345 | 0.53 | [ |
PZT | DIW | Concentric ring | 1081 | - | 25 kV·cm-1, room temperature 30 min | 496 | - | [ |
KNN | DIW | 3-3 | 1775 | - | 2.5 kV·mm-1, 100 ℃ 20 min, silicone oil | 280 | - | [ |
BT | DIW | Bulk | 4730 | 0.033 | 0.66 MV·m-1, 80 ℃ 15 h, silicon oil | 200 | - | [ |
BCZT | DIW | 3-3 | 1046 | 0.021 | 3 kV·mm-1, room temperature 30 min, silicon oil | (100±4) | - | [ |
Nb-PZT | IP | 2-2 | ~700 | ~0.04 | 4 kV·mm-1, 120 ℃ 40 min, silicon oil | - | 0.46 | [ |
PZT | FDM | 3-3 | 700 | - | 25 kV, 70 ℃ 15-20 min, Corona technique | (290±10) | 0.5 | [ |
PZT | FDM | 2-2 | 627 | 0.023 | 26 kV, 60 ℃ 15 min, Corona technique | (397±16) | 0.68, 0.32(kp) | [ |
[1] |
XU S, HANSEN B J, WANG Z L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 2010, 1: 93.
DOI URL |
[2] | VAN DEN ENDE D A, VAN DE WIEL H J, GROEN W A, et al. Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites. Smart Materials and Structures, 2012, 21: 015011. |
[3] | XU X H, LI H. Photoacoustic imaging in biomedicine. Physics, 2008, 37(2): 111-119. |
[4] |
CARULLO A, PARVIS M. An ultrasonic sensor for distance measurement in automotive applications. IEEE Sensors Journal, 2001, 1(2): 143.
DOI URL |
[5] |
ROUNDY S, WRIGHT P K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 2004, 13(5): 1131.
DOI URL |
[6] |
SWARTZ S L. Topics in electronic ceramics. IEEE Transactions on Electrical Insulation, 1990, 25(5): 935-987.
DOI URL |
[7] |
MATTOX J M. Additive manufacturing and its implications for military ethics. Journal of Military Ethics, 2013, 12(3): 225-234.
DOI URL |
[8] | IBN-MOHAMMED T, KOH S C L, REANEY I M, et al. Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy & Environmental Science, 2016, 9(11): 3495-3520. |
[9] |
BELL A J, DEUBZER O. Lead-free piezoelectrics-the environmental and regulatory issues. MRS Bulletin, 2018, 43(8): 581-587.
DOI URL |
[10] |
NEWNHAM R E, SKINNER D P, CROSS L E. Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin, 1978, 13(5): 525-536.
DOI URL |
[11] |
JANTUNEN H, HU T, UUSIMÄKI A, et al. Tape casting of ferroelectric, dielectric, piezoelectric and ferromagnetic materials. Journal of the European Ceramic Society, 2004, 24(6): 1077-1081.
DOI URL |
[12] |
PARK G T, CHOI J J, PARK C S, et al. Piezoelectric and ferroelectric properties of 1-μm-thick lead zirconate titanate film fabricated by a double-spin-coating process. Applied Physics Letters, 2004, 85(12): 2322-2324.
DOI URL |
[13] |
SAVAKUS H P, KLICKER K A, NEWNHAM R E. PZT-epoxy piezoelectric transducers: a simplified fabrication procedure. Materials Research Bulletin, 1981, 16(6): 677-680.
DOI URL |
[14] |
GARCÍA-GANCEDO L, OLHERO S M, ALVES F J, et al. Application of gel-casting to the fabrication of 1-3 piezoelectric ceramic-polymer composites for high-frequency ultrasound devices. Journal of Micromechanics and Microengineering, 2012, 22(12): 125001.
DOI URL |
[15] | LEJEUNE M, CHARTIER T, DOSSOU-YOVO C, et al. Ink-jet printing of ceramic micro-pillar arrays. Advances in Science and Technology, 2006, 45: 413-420. |
[16] | ICHIDA Y. Current status of 3D printer use among automotive suppliers: can 3D printed-parts replace cast parts. IFEAMA SPSCP, 2016, 5: 69-82. |
[17] |
NICHOLS M R. How does the automotive industry benefit from 3D metal printing? Metal Powder Report, 2019, 74(5): 257-258.
DOI URL |
[18] | LAMBERT P, CHARTRAIN N, SCHULTZ A, et al. Mask Projection Microstereolithography of Novel Biocompatible Polymers. International Solid Freeform Fabrication Symposium, 2014:974-990. |
[19] |
SONG X, CHEN Z, LEI L, et al. Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions. Rapid Prototyping Journal, 2017, 23(1): 44-53.
DOI URL |
[20] | TILLER B, REID A, ZHU B, et al. Piezoelectric microphone via a digital light processing 3D printing process. Materials & Design, 2019, 165: 107593. |
[21] |
OVHAL M M, KUMAR N, KANG J W. 3D direct ink writing fabrication of high-performance all-solid-state micro-supercapacitors. Molecular Crystals and Liquid Crystals, 2020, 705(1): 105-111.
DOI URL |
[22] |
TRUBY R L, LEWIS J A. Printing soft matter in three dimensions. Nature, 2016, 540(7633): 371-378.
DOI URL |
[23] | CHU Y, QIAN C, CHAHAL P, et al. Printed diodes: Materials processing, fabrication, and applications. Advanced Science, 2019, 6(6): 1801653. |
[24] | HEINZL J, HERTZ C H. Ink-jet printing. Advances in Electronics and Electron Physics, 1985, 65: 91-171. |
[25] |
WANG T, DERBY B. Ink-jet printing and sintering of PZT. Journal of the American Ceramic Society, 2005, 88(8): 2053-2058.
DOI URL |
[26] |
LEE K Y, CHO J W, CHANG N Y, et al. Accuracy of three-dimensional printing for manufacturing replica teeth. The Korean Journal of Orthodontics, 2015, 45(5): 217-225.
DOI URL |
[27] | SAFARI A, CESARANO J, CLEM P G, et al. Fabrication of Advanced Functional Electroceramic Components by Layered Manufacturing (LM) Methods. Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF, Japan, 2002:1-6. |
[28] | CASTLES F, ISAKOV D, LUI A, et al. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Scientific Reports, 2016, 6: 22714. |
[29] |
PARUPELLI S, DESAI S. A comprehensive review of additive manufacturing (3D printing): processes, applications and future potential. American Journal of Applied Sciences, 2019, 16(8): 244-272.
DOI URL |
[30] | BÁRTOLO P J. Stereolithography:Materials, Processes and Applications. Boston: Springer Science & Business Media, 2011: 42. |
[31] | SWAINSON W K. Method, Medium and Apparatus for Producing Three-dimensional Figure Product. US Patent, 4041476. 1977-08-09. |
[32] | HULL C W. Apparatus for Production of Three-dimensional Objects by Stereolithography. US Patent, 45753301. 1986. |
[33] | HULL C W, SPENCE S T, ALBERT D J, et al. Methods and Apparatus for Production of Three-dimensional Objects by Stereolithography. US Patent, 5059359. 1991-10-22. |
[34] |
LI S, DUAN W, ZHAO T, et al. The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology. Journal of the European Ceramic Society, 2018, 38(14): 4597-4603.
DOI URL |
[35] |
HE C, LIU X, MA C, et al. Digital light processing fabrication of mullite component derived from preceramic precursor using photosensitive hydroxysiloxane as the matrix and alumina nanoparticles as the filler. Journal of the European Ceramic Society, 2021, 41(11): 5570-5577
DOI URL |
[36] |
DUFAUD O, MARCHAL P, CORBEL S. Rheological properties of PZT suspensions for stereolithography. Journal of the European Ceramic Society, 2002, 22(13): 2081-2092.
DOI URL |
[37] |
DUFAUD O, CORBEL S. Oxygen diffusion in ceramic suspensions for stereolithography. Chemical Engineering Journal, 2003, 92(1/2/3): 55-62.
DOI URL |
[38] |
DUFAUD O, CORBEL S. Application of stereolithography to chemical engineering: ‘from macro to micro’. Chemical Engineering Research and Design, 2005, 83(2): 133-138.
DOI URL |
[39] |
KIM K, ZHU W, QU X, et al. 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano, 2014, 8(10): 9799-9806.
DOI URL |
[40] |
CHEN Z, SONG X, LEI L, et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy, 2016, 27: 78-86.
DOI URL |
[41] |
VIJATOVIĆ M M, BOBIĆ J D, STOJANOVIĆ B D. History and challenges of barium titanate: Part II. Science of Sintering, 2008, 40(3): 235-244.
DOI URL |
[42] |
CHEN W, WANG F, YAN K, et al. Micro-stereolithography of KNN-based lead-free piezoceramics. Ceramics International, 2019, 45(4): 4880-4885.
DOI URL |
[43] |
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84-87.
DOI URL |
[44] |
CUI H, HENSLEIGH R, YAO D, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials, 2019, 18(3): 234-241.
DOI URL |
[45] |
CHEN Y, BAO X, WONG C M, et al. PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application. Ceramics International, 2018, 44(18): 22725-22730.
DOI URL |
[46] | CESARANO III J, CALVERT P D. Freeforming Objects with Low-binder Slurry. US Patent, 6027326. 2000-02-22. |
[47] |
MORISSETTE S L, LEWIS J A, CESARANO J, et al. Solid freeform fabrication of aqueous alumina-poly (vinyl alcohol) gelcasting suspensions. Journal of the American Ceramic Society, 2000, 83(10): 2409-2416.
DOI URL |
[48] |
DUOSS E B, TWARDOWSKI M, LEWIS J A. Sol-Gel inks for direct-write assembly of functional oxides. Advanced Materials, 2007, 19(21): 3485-3489.
DOI URL |
[49] |
MARQUES C F, PERERA F H, MAROTE A, et al. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: mechanical, anti-microbial and osteoblastic properties. Journal of the European Ceramic Society, 2017, 37(1): 359-368.
DOI URL |
[50] |
KOLESKY D B, TRUBY R L, GLADMAN A S, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, 2014, 26(19): 3124-3130.
DOI URL |
[51] |
KOLESKY D B, HOMAN K A, SKYLAR-SCOTT M A, et al. Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016, 113(12): 3179-3184.
DOI URL |
[52] |
SMAY J E, CESARANO J, LEWIS J A. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir, 2002, 18(14): 5429-5437.
DOI URL |
[53] | WANG R, ZHU P, YANG W, et al. Direct-writing of 3D periodic TiO2 bio-ceramic scaffolds with a Sol-Gel ink for in vitro cell growth. Materials & Design, 2018, 144: 304-309. |
[54] |
CHEN T, SUN A, CHU C, et al. Rheological behavior of titania ink and mechanical properties of titania ceramic structures by 3D direct ink writing using high solid loading titania ceramic ink. Journal of Alloys and Compounds, 2019, 783: 321-328.
DOI URL |
[55] |
TUTTLE B A, SMAY J E, CESARANO J, et al. Robocast Pb(Zr0.95Ti0.05)O3 ceramic monoliths and composites. Journal of the American Ceramic Society, 2001, 84(4): 872-874.
DOI URL |
[56] |
SMAY J E, CESARANO III J, TUTTLE B A, et al. Piezoelectric properties of 3-X periodic Pb(ZrxTi1-x)O3-polymer composites. Journal of Applied Physics, 2002, 92(10): 6119-6127.
DOI URL |
[57] |
SMAY J E, CESARANO III J, TUTTLE B A, et al. Directed colloidal assembly of linear and annular lead zirconate titanate arrays. Journal of the American Ceramic Society, 2004, 87(2): 293-295.
DOI URL |
[58] |
LI Y, LI L, LI B. Direct ink writing of three-dimensional (K, Na)NbO3- based piezoelectric ceramics. Materials, 2015, 8(4): 1729-1737.
DOI URL |
[59] | GAO M, LI L, LI W, et al. Direct writing of patterned, lead-free nanowire aligned flexible piezoelectric device. Advanced Science, 2016, 3(8): 1600120. |
[60] |
KIM H, RENTERIA-MARQUEZ A, ISLAM M D, et al. Fabrication of bulk piezoelectric and dielectric BaTiO3 ceramics using paste extrusion 3D printing technique. Journal of the American Ceramic Society, 2019, 102(6): 3685-3694.
DOI URL |
[61] | LORENZ M, MARTIN A, WEBBER K G, et al. Electromechanical properties of Robocasted barium titanate ceramics. Advanced Engineering Materials, 2020, 22(9): 2000325. |
[62] | LIU W, REN X. Large piezoelectric effect in Pb-free ceramics. Physical Review Letters, 2009, 103(25): 257602. |
[63] |
NAN B, OLHERO S, PINHO R, et al. Direct ink writing of macroporous lead-free piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3. Journal of the American Ceramic Society, 2019, 102(6): 3191-3203.
DOI URL |
[64] |
NAN B, GALINDO-ROSALES F J, FERREIRA J M F. 3D printing vertically: direct ink writing free-standing pillar arrays. Materials Today, 2020, 35: 16-24.
DOI URL |
[65] |
TARIVERDIAN T, BEHNAMGHADER A, MILAN P B, et al. 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering. Ceramics International, 2019, 45(11): 14029-14038.
DOI URL |
[66] |
DERBY B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annual Review of Materials Research, 2010, 40: 395-414.
DOI URL |
[67] |
BLAZDELL P F, EVANS J R G, EDIRISINGHE M J, et al. The computer aided manufacture of ceramics using multilayer jet printing. Journal of Materials Science Letters, 1995, 14(22): 1562-1565.
DOI URL |
[68] |
XIANG Q F, EVANS J R G, EDIRISINGHE M J, et al. Solid freeforming of ceramics using a drop-on-demand jet printer. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1997, 211(3): 211-214.
DOI URL |
[69] |
ZHAO X, EVANS J R G, EDIRISINGHE M J, et al. Direct ink-jet printing of vertical walls. Journal of the American Ceramic Society, 2002, 85(8): 2113-2115.
DOI URL |
[70] |
TENG W D, EDIRISINGHE M J, EVANS J R G. Optimization of dispersion and viscosity of a ceramic jet printing ink. Journal of the American Ceramic Society, 1997, 80(2): 486-494.
DOI URL |
[71] |
BHATTI A R, MOTT M, EVANS J R G, et al. PZT pillars for 1-3 composites prepared by ink-jet printing. Journal of Materials Science Letters, 2001, 20(13): 1245-1248.
DOI URL |
[72] | NOGUERA R, DOSSOU-YOVO C, LEJEUNE M, et al. Fabrication of 3D fine scale PZT components by ink-jet prototyping process. Journal de Physique IV (Proceedings), 2005, 128: 87-93. |
[73] |
NOGUERA R, LEJEUNE M, CHARTIER T. 3D fine scale ceramic components formed by ink-jet prototyping process. Journal of the European Ceramic Society, 2005, 25(12): 2055-2059.
DOI URL |
[74] |
LEJEUNE M, CHARTIER T, DOSSOU-YOVO C, et al. Ink-jet printing of ceramic micro-pillar arrays. Journal of the European Ceramic Society, 2009, 29(5): 905-911.
DOI URL |
[75] |
NOSHCHENKO O, KUSCER D, MOCIOIU O C, et al. Effect of milling time and pH on the dispersibility of lead zirconate titanate in aqueous media for inkjet printing. Journal of the European Ceramic Society, 2014, 34(2): 297-305.
DOI URL |
[76] |
BAKARIČ T, MALIČ B, KUSCER D. Lead-zirconate-titanate- based thick-film structures prepared by piezoelectric inkjet printing of aqueous suspensions. Journal of the European Ceramic Society, 2016, 36(16): 4031-4037.
DOI URL |
[77] | KUSCER D, DRNOVŠEK S, LEVASSORT F. Inkjet-printing- derived lead-zirconate-titanate-based thick films for printed electronics. Materials & Design, 2020, 198: 109324. |
[78] |
WAGATA H, GALLAGE R, YOSHIMURA M, et al. Patterning of BaTiO3 by inkjet deposition using a precursor solution. Materials Science and Engineering: B, 2009, 161(1/2/3): 146-150.
DOI URL |
[79] |
SEERDEN K A, REIS N, EVANS J R, et al. Ink-jet printing of wax-based alumina suspensions. Journal of the American Ceramic Society, 2001, 84(11): 2514-2520.
DOI URL |
[80] |
VADILLO D C, TULADHAR T R, MULJI A C, et al. The rheological characterization of linear viscoelasticity for ink jet fluids using piezo axial vibrator and torsion resonator rheometers. Journal of Rheology, 2010, 54(4): 781-795.
DOI URL |
[81] |
LEWIS J A. Direct ink writing of 3D functional materials. Advanced Functional Materials, 2006, 16(17): 2193-2204.
DOI URL |
[82] |
SCHLORDT T, SCHWANKE S, KEPPNER F, et al. Robocasting of alumina hollow filament lattice structures. Journal of the European Ceramic Society, 2013, 33: 3243-3248.
DOI URL |
[83] |
MUTH J T, VOGT D M, TRUBY R L, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 2014, 26(36): 6307-6312.
DOI URL |
[84] |
MCNULTY T F, MOHAMMADI F, BANDYOPADHYAY A, et al. Development of a binder formulation for fused deposition of ceramics. Rapid Prototyping Journal, 1998, 4(4): 144-150.
DOI URL |
[85] |
BANDYOPADHYAY A, PANDA R K, MCNULTY T F, et al. Piezoelectric ceramics and composites via rapid prototyping techniques. Rapid Prototyping Journal, 1998, 4(1): 37-49.
DOI URL |
[86] |
LOUS G M, CORNEJO I A, MCNULTY T F, et al. Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics. Journal of the American Ceramic Society, 2000, 83(1): 124-128.
DOI URL |
[87] |
BRENNAN R E, TURCU S, HALL A, et al. Fabrication of electroceramic components by layered manufacturing (LM). Ferroelectrics, 2003, 293(1): 3-17.
DOI URL |
[88] | SAFARI A, ALLAHVERDI M, AKDOGAN E K. Solid freeform fabrication of piezoelectric sensors and actuators. Frontiers of Ferroelectricity, 2006: 177-198. |
[89] |
SAFARI A, AKDOGAN E K. Rapid prototyping of novel piezoelectric composites. Ferroelectrics, 2006, 331(1): 153-179.
DOI URL |
[90] |
KIM H, FERNANDO T, LI M, et al. Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. Journal of Composite Materials, 2018, 52(2): 197-206.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||