无机材料学报 ›› 2019, Vol. 34 ›› Issue (3): 236-246.DOI: 10.15541/jim20180321

所属专题: 热电材料与器件

• 综述 • 上一篇    下一篇

热电材料的第一性原理高通量研究

李鑫, 席丽丽, 杨炯   

  1. 上海大学 材料基因组工程研究院, 上海200444
  • 收稿日期:2018-07-16 修回日期:2018-10-02 出版日期:2019-03-20 发布日期:2019-02-26
  • 作者简介:李 鑫(1993-), 女, 博士研究生. E-mail: xinli@t.shu.edu.cn
  • 基金资助:
    国家重点研发计划(2017YFB0701600);国家自然科学基金(51572167, 51632005, 11574333, 11674211)

First Principles High-throughput Research on Thermoelectric Materials: a Review

LI Xin, XI Li-Li, YANG Jiong   

  1. Materials Genome Institute, Shanghai University, Shanghai 200444, China;
  • Received:2018-07-16 Revised:2018-10-02 Online:2019-03-20 Published:2019-02-26
  • Supported by:
    National Key Research and Development Program of China (2017YFB0701600);National Natural Science Foundation of China (51572167, 51632005, 11574333, 11674211)

摘要:

热电材料是一种新型能量转换材料, 在温差发电或通电制冷等领域具有广泛应用。热电优值ZT值是衡量热电材料能量转换效率的关键参数, ZT值要求热电材料具有优异的电输运性能及较低的热导率。传统第一性原理热电材料研究往往关注少量样本下的电热输运性质理解与优化, 很难得到系统性的规律, 也不利于新体系的设计优化。材料基因组计划力求通过大数据、高通量手段去加速材料设计与发现, 具有广阔的发展前景。在热电材料研究领域, 第一性原理高通量计算也将在新材料预测与性能优化等方面起到越来越重要的作用。另一方面, 高通量研究也带来了新的挑战, 譬如电热输运性质的高通量算法发展、大数据分析手段等等, 这些方面的问题决定了高通量方法在材料应用中的效率与准确性。本文综述了热电材料中现有的电热输运性质高通量计算方法, 介绍了这些方法具体的应用案例, 并对高通量与热电材料结合的未来发展趋势进行了展望。

 

关键词: 高通量, 第一性原理, 热电材料, 电热输运, 综述

Abstract:

Thermoelectric materials are a kind of energy conversion materials, which are extensively used in power generation or refrigeration. The key parameter that measure the performance of thermoelectric materials is the figure of merit ZT value, which requires material excellent electrical transport performance and low thermal conductivity. Standard first principles calculations on thermoelectric materials focus on small samples of materials, which is difficult to conclude general rules and propose new candidates. The Materials Genome Initiative speeds up the discovery and design of materials based on big data and high-throughput computational methods, which is promising in novel material screening. In thermoelectrics, first principles high-throughput calculations play an increasingly important role in the predicting and designing new materials. However, there are some drawbacks in the current high-throughput efforts for thermoelectric material screening, such as the demand of efficient high-throughput algorithms for transport properties, suitable tools for analyzing big data, etc. Solving these challenges strongly determines the efficiency and accuracy of high-throughput applications in thermoelectrics. This review summarizes several high-throughput theoretical methods and cases study on electrical and thermal transport properties in thermoelectric materials, and prospects the future trend of the combination of high-throughput and thermoelectric material research.

Key words: high-throughput, first principles, thermoelectric materials, electrical and thermal transport properties, review

中图分类号: