Boron Nitride Nanosheets Supported Cu2O Nanoparticles: Synthesis and Catalytic Reduction for 4-nitrophenol
Journal of Inorganic Materials
2019, 34 (8):
817-826.
DOI: 10.15541/jim20180487
Despite excellent catalytic capability, Cu2O nanomaterial exhibits weak stability which limits its application. In this study, a novel kind of Cu2O, Cu2O/BNNSs-OH, supported catalyst with highly catalytic efficiency and stability, was facilely fabricated via a controllable liquid phase reduction of ascorbic acid and combining with an annealing process. Cu2O/BNNSs-OH catalyst was synthesized by using boron nitride nanosheets (BNNSs), prepared by the “push-pull” effect of polyvinylpyrrolidone (PVP) and water phase change, as a supporter and spherical Cu2O nanoparticles (2-7 nm) prepared by forward titration (ascorbic acid→Cu 2+, solution with a pH 11) as active components. Morphology and structure of as-obtained samples were characterized by scanning electron microscopy (SEM), high resolution transmission electronic microscopy (HRTEM), atomic force microscopy (AFM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. The results of the synthetic method showed that spherical Cu2O nanoparticles were uniformly dispersed on the carrier surface and BNNSs displayed some stabilization effect on Cu2O which could be prevented from being oxidized into CuO. Moreover, the catalytic activity was investigated by catalytic reduction reaction of 4-nitrophenol to 4-aminophenol. Cu2O/BNNSs-OH with high catalytic activity similar to the noble metal catalyst for the reduction of 4-nitrophenol is highly reusable for five successive cycles without significant degradation and activity loss. ![]()
Fig. 5
XRD patterns of precursors (A) before adding VC at pH 5-7 (a) and pH 9-11 (b), specimens (B) in ascorbic acid solution reduction system at different pH, and FT-IR spectra of the as-obtained samples at pH 11 (C)
Extracts from the Article
在液相还原法制备纳米Cu2O/BNNSs-OH过程中, 不同pH环境下, 产物的组成与形貌有所不同。前驱体阶段(图5(a)), 当混合溶液pH在5~7区间, Cu2+转变为Cu(OH)2形式, 随着pH升至9~11区间, 则以CuO形式为主。抗坏血酸还原阶段(图5(b)), 当反应体系pH分别为3、5时, 以载体BNNSs-OH的XRD图谱为参照, 图谱中其余三个尖锐的衍射峰分别对应Cu的(111)、(200)、(220)晶面, 与Cu标准卡片(JCPDS 04-0836)相对应, 且图中未出现Cu2O和CuO的衍射峰。当反应体系pH为7时, 除了Cu以外, 产物开始出现Cu2O物相(JCPDS 77-0199), 但Cu仍为主要产物。随着反应体系pH升高至9, Cu2O(111)衍射峰的强度逐渐增强, 而Cu(111)衍射峰的强度大幅降低, 说明Cu2O的含量随着反应体系pH的升高而增加, 产物物相的组成发生剧烈变化, 主导相变为Cu2O。当反应体系pH持续升高至11时, 反应产物为Cu2O, 其特征衍射峰归属于Cu2O的(110)、(111)、(200)、(220)、(311)晶面, 且没有其他杂质峰。发生上述物相变化的原因是,抗坏血酸的还原能力与反应体系的pH有关。在强碱性条件下, VC还原能力降低, CuO作为反应前驱体仅能被还原为Cu2O[19] (2CuO+C6H8O6→Cu2O+ C6H6O6+H2O); 在酸性或弱碱性条件下, VC的共轭体系能够提供足够的电子将前驱体Cu(OH)2还原为单质Cu(Cu(OH)2+C6H8O6→Cu2O+C6H6O6+H2O, Cu2O+C6H8O6→Cu+C6H6O6+H2O); 在液相还原过程中, VC的存在可以抑制Cu及Cu2O被氧化成CuO[24]。
载体也是影响催化活性的一个重要因素。氮化硼纳米片中B、N的pz轨道与铜的dz2轨道重叠, 增强BNNSs与Cu2O NPs表面结合能力, 但功能化氮化硼纳米片表面的-OH同样有利于Cu2O NPs的固定。相对BNNSs而言, BNNSs-OH拥有更多的活性位点, 可作为Cu2O NPs的理想载体材料。由Cu2O/ BNNSs-OH的FT-IR图谱(图5(c))看出, 除了出现BNNSs-OH特征峰外, 在631 cm-1处有强烈的Cu-O振动, 且3400 cm-1处羟基吸收峰强度明显减弱, 表明载体表面及边缘的羟基能够充当Cu2O NPs与载体接触的活性位点。由UV-Vis光谱变化情况看出, 未功能化的氮化硼纳米片为载体(图9(e))时, 催化活性远不如BNNSs-OH。图9(f)为不同类型催化剂还原4-NP速率图, 结果表明, 单独的NaBH4和载体都不能还原4-NP, 进一步证明Cu2O/BNNSs-OH还原速率明显高于其他类型催化剂。
Other Images/Table from this Article
|