Journal of Inorganic Materials ›› 2026, Vol. 41 ›› Issue (1): 63-69.DOI: 10.15541/jim20250089
• RESEARCH ARTICLE • Previous Articles Next Articles
HU Yuchen1,2(
), XU Zishuo2,3, HU Yuejuan2,3, CHEN Lidong2,3, YAO Qin2,3(
)
Received:2025-02-27
Revised:2025-04-17
Published:2026-01-20
Online:2025-04-27
About author:HU Yuchen (2000-), female, Master candidate. E-mail: huych2022@shanghaitech.edu.cn
Supported by:CLC Number:
HU Yuchen, XU Zishuo, HU Yuejuan, CHEN Lidong, YAO Qin. Enhanced Thermoelectric Properties of Two-dimensional Planar Copper Polyphthalocyanine by Dispersing Single-walled Carbon Nanotubes[J]. Journal of Inorganic Materials, 2026, 41(1): 63-69.
Fig. 3 TEM and SEM images of IS-CuPPc/SWCNTs and BM-CuPPc/SWCNTs composites (a-d) TEM images of (a, b) IS-CuPPc/40%SWCNTs powder and (c, d) BM-CuPPc/60%SWCNTs powder; (e-g) SEM images of cross-sections of (e) IS-CuPPc/10%SWCNTs, (f) IS-CuPPc/60%SWCNTs and (g) IS-CuPPc/80%SWCNTs composite block; (h-j) SEM images of cross-sections of (h) BM-CuPPc/10%SWCNTs, (i) BM-CuPPc/60%SWCNTs and (j) BM-CuPPc/80%SWCNTs composite block
Fig. 4 Electrical transport properties of IS-CuPPc/SWCNTs and BM-CuPPc/SWCNTs samples with different SWCNTs mass fractions (a) Electrical conductivity; (b) Seebeck coefficient; (c) Thermoelectric power factor
Fig. 5 High-resolution Cu2p XPS spectra of CuPPc, IS-CuPPc/xSWCNTs (x=40%, 60%, 80%) and BM-CuPPc/ySWCNTs (y=40%, 60%, 80%) (a) CuPPc; (b) CuPPc and IS-CuPPc/xSWCNTs (x=40%, 60%, 80%); (c) CuPPc and BM-CuPPc/ySWCNTs (y=40%, 60%, 80%)
| [1] |
XU Y, YAN J, ZHOU W, et al. Development of high performance thermoelectric polymers via doping or dedoping engineering. Chemistry-An Asian Journal, 2024, 19(15): e202400329.
DOI URL |
| [2] |
ABBASI M S, SULTANA R, AHMED I, et al. Contemporary advances in organic thermoelectric materials: fundamentals, properties, optimization strategies, and applications. Renewable and Sustainable Energy Reviews, 2024, 200: 114579.
DOI URL |
| [3] |
XIAO R, ZHOU X, ZHANG C, et al. Organic thermoelectric materials for wearable electronic devices. Sensors, 2024, 24(14): 4600.
DOI URL |
| [4] | 梁子材, 谢美丽, 张菊华, 等. 功能聚酞菁化合物的进展. 化工新型材料, 1986, 10: 5. |
| [5] |
YANG C, JIANG K, ZHENG Q, et al. Chemically stable polyarylether-based metallophthalocyanine frameworks with high carrier mobilities for capacitive energy storage. Journal of the American Chemical Society, 2021, 143(42): 17701.
DOI PMID |
| [6] |
GOMEZ-ROMERO P, LEE Y S, KERTESZ M. Band structure calculation of extended poly(copper phthalocyanine) one-dimensional and two-dimensional polymers. Inorganic Chemistry, 1988, 27(20): 3672.
DOI URL |
| [7] |
ALIABAD H A R, BASHI M. Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18720.
DOI |
| [8] | VENKATACHALAM S, KRISHNAMURTHY V N. Polymeric pthalocyanines and other electrically conducting polymers for electronic and photonic applications: a review. Indian Journal of Chemistry, 1994, 33A(6): 506. |
| [9] |
ZHANG Y, ZHANG X, JIAO L, et al. Conductive covalent organic frameworks of polymetallophthalocyanines as a tunable platform for electrocatalysis. Journal of the American Chemical Society, 2023, 145(44): 24230.
DOI URL |
| [10] |
LI J, HUCKLEBY A B, ZHANG M. Polymer-based thermoelectric materials: a review of power factor improving strategies. Journal of Materiomics, 2022, 8(1): 204.
DOI URL |
| [11] |
NANDIHALLI N, LIU C J, MORI T. Polymer based thermoelectric nanocomposite materials and devices: fabrication and characteristics. Nano Energy, 2020, 78: 105186.
DOI URL |
| [12] |
YANG J, ZHANG H, HU N, et al. Recent advances in carbon nanotubes-based organic thermoelectric composites-a mini review. Materials Today Nano, 2025, 29: 100590.
DOI URL |
| [13] |
JI D, LI B, RAJ B T, et al. In situ surface polymerization of PANI/SWCNT bilayer film: effective composite for improving seebeck coefficient and power factor. Advanced Materials Interfaces, 2025, 12(1): 2400566.
DOI URL |
| [14] |
WEI S, ZHANG Y, LV H, et al. SWCNT network evolution of PEDOT:PSS/SWCNT composites for thermoelectric application. Chemical Engineering Journal, 2022, 428: 131137.
DOI URL |
| [15] |
WANG M, YAO Q, QU S, et al. Preparation and thermoelectric properties of semiconducting single-walled carbon nanotubes/ regioregular poly(3-dodecylthiophene) composite films. Polymers, 2020, 12(11): 2720.
DOI URL |
| [16] |
CHEN Y, QU S, SHI W, et al. Enhanced thermoelectric properties of copper phthalocyanine/single-walled carbon nanotubes hybrids. Carbon, 2020, 159: 471.
DOI URL |
| [17] |
MCKEOWN N B. Phthalocyanine-containing polymers. Journal of Materials Chemistry, 2000, 10(9): 1979.
DOI URL |
| [18] |
FARAHMAND S, GHIACI M, RAZAVIZADEH J S. Copper phthalocyanine as an efficient and reusable heterogeneous catalyst for direct hydroxylation of benzene to phenol under mild conditions. Inorganica Chimica Acta, 2019, 484: 174.
DOI URL |
| [19] |
GUO X, LIU J, CAO L, et al. Nonvolatile memory device based on copper polyphthalocyanine thin films. ACS Omega, 2019, 4(6): 10419.
DOI PMID |
| [20] |
LOZZI L, SANTUCCI S, BUSSOLOTTI F, et al. Investigation on copper phthalocyanine/multiwalled carbon nanotube interface. Journal of Applied Physics, 2008, 104(3): 033701.
DOI URL |
| [21] |
UHLÍŘOVÁ T, MOJZEŠ P, MELNIKOVÁ Z, et al. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: manifestations of two mechanisms of graphene-enhanced Raman scattering. Journal of Raman Spectroscopy, 2017, 48(10): 1270.
DOI URL |
| [22] |
NGUYEN D, KANG G, CHIANG N, et al. Probing molecular- scale catalytic interactions between oxygen and cobalt phthalocyanine using tip-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2018, 140(18): 5948.
DOI URL |
| [23] |
ZHOU W, VAVRO J, NEMES N M, et al. Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes. Physical Review B, 2005, 71(20): 205423.
DOI URL |
| [24] |
EPSTEIN A, WILDI B S. Electrical properties of poly-copper phthalocyanine. The Journal of Chemical Physics, 1960, 32(2): 324.
DOI URL |
| [1] | ZHANG Yongheng, CHEN Jixin. Preparation and Properties of Ytterbium Aluminosilicate Glass and SiC Modified h-BN-based Composites [J]. Journal of Inorganic Materials, 2026, 41(1): 37-44. |
| [2] | HAN Weiwei, HUANG Dong, LI Tingsong, LI Jiang. Sm:LuAG/Nd:LuAG Composite Laser Ceramics with Cladding Structure: Fabrication and Properties [J]. Journal of Inorganic Materials, 2026, 41(1): 113-118. |
| [3] | CHEN Bin, REN Ke, WANG Yiguang. Evolution of Mechanical Properties of Mini-SiCf/SiC Composites at High Temperatures over a Long Period of Time [J]. Journal of Inorganic Materials, 2025, 40(9): 971-980. |
| [4] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
| [5] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
| [6] | LI Jianjun, CHEN Fangming, ZHANG Lili, WANG Lei, ZHANG Liting, CHEN Huiwen, XUE Changguo, XU Liangji. Peroxymonosulfate Activation by CoFe2O4/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic [J]. Journal of Inorganic Materials, 2025, 40(4): 440-448. |
| [7] | MU Shuang, MA Qin, ZHANG Yu, SHEN Xu, YANG Jinshan, DONG Shaoming. Oxidation Behavior of Yb2Si2O7 Modified SiC/SiC Mini-composites [J]. Journal of Inorganic Materials, 2025, 40(3): 323-328. |
| [8] | YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329-336. |
| [9] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
| [10] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
| [11] | WANG Yue, WANG Xin, YU Xianli. Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide [J]. Journal of Inorganic Materials, 2025, 40(3): 305-313. |
| [12] | LUAN Xingang, HE Dianwei, TU Jianyong, CHENG Laifei. 2D Plain and 3D Needle-punched C/SiC Composites: Low-velocity Impact Damage Behavior and Failure Mechanism [J]. Journal of Inorganic Materials, 2025, 40(2): 205-214. |
| [13] | MIAO Pengcheng, WANG Lijun, SHEN Ziyi, HUANG Li, YUAN Ningyi, DING Jianning. Micro-spherical Ag2Se: Solvothermal Synthesis and Thermoelectric Properties [J]. Journal of Inorganic Materials, 2025, 40(12): 1373-1378. |
| [14] | WANG Hongbin, WANG Leying, LUO Linghong, CHENG Liang, XU Xu. Electrolytic CO2 Performance of La0.3Sr0.6Ti1-xNixO3-δ-based Fiber Fuel Electrode for Solid Oxide Electrolysis Cell [J]. Journal of Inorganic Materials, 2025, 40(11): 1212-1220. |
| [15] | WU Mingxuan, LI Junjie, CHEN Shuo, YAN Yonggao, SU Xianli, ZHANG Qingjie, TANG Xinfeng. Homogeneity of Zone-melted n-type Bi1.96Sb0.04Te2.70Se0.30 Thermoelectric Material [J]. Journal of Inorganic Materials, 2025, 40(11): 1252-1260. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||