Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (10): 1100-1106.DOI: 10.15541/jim20240215
• RESEARCH ARTICLE • Previous Articles Next Articles
Received:
2024-04-24
Revised:
2024-05-10
Published:
2024-10-20
Online:
2024-05-16
About author:
PENG Ping (1991-), female, PhD, associate professor. E-mail: xgpengping@163.com
Supported by:
CLC Number:
PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics[J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106.
Fig. 2 SEM images of BCTS-xCuO ceramics (a) x=0, Ts=1480 ℃; (b) x=0.01, Ts=1380 ℃; (c) x=0.03, Ts=1380 ℃; (d) x=0.05, Ts=1360 ℃; (e) x=0.07, Ts=1360 ℃
Fig. 6 Temperature-dependent dielectric properties of BCTS-xCuO samples (a) Relative permittivity εr; (b) TC as a function of CuO content; Colorful figures are available on website
Fig. 7 Dielectric properties of BCTS-xCuO ceramics measured at 10 kHz and room temperature (a) εr as a function of CuO content; (b) tanδ as a function of CuO content
Fig. 8 Piezoelectric properties of BCTS-xCuO (a) d33 as a function of CuO content; (b) Impedance and phase angle for the x=0.03 component ceramics; (c) kp as a function of CuO content; (d) Dependence of d33 on sintering temperature for the x=0.03 component ceramics
[1] | BOULOS M, GUILLEMET-FRITSCH S, MATHIEU F, et al. Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics. Solid State Ionics, 2005, 176(13/14): 1301. |
[2] | TINA G A, PUNETHA P, ADHIKARY G D, et al. Simultaneous increase in piezoelectric response and Curie point in BaTiO3 based Pb-free piezoceramic. Scripta Materialia, 2024, 243: 115994. |
[3] | KARAKI T, YAN K, MIYAMOTO T, et al. Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Japanese Journal of Applied Physics, 2007, 46: L97. |
[4] | HAO J, LI W, ZHAI J, et al. Progress in high-strain perovskite piezoelectric ceramics. Materials Science & Engineering R: Reports, 2019, 135: 1. |
[5] | ACOSTA M, NOVAK N, ROJAS V, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Applied Physics Reviews, 2017, 4(4): 041305. |
[6] | WANG L, LIU L, XUE D, et al. Wet routes of high purity BaTiO3 nanopowders. Journal of Alloys and Compounds, 2007, 440(1/2): 78. |
[7] | SHEN Z, LI J. Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure. Journal of the Ceramic Society of Japan, 2010, 118(1382): 940. |
[8] | WANG X, ZHU Y, ZHANG P, et al. Phase structure and piezoelectric property of (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3 lead-free piezoceramics. Journal of Inorganic Materials, 2022, 37(5): 513. |
[9] | BOWEN C R, GITTINGS J, TURNER I G, et al. Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites. Applied Physics Letters, 2006, 89(13): 132906. |
[10] | HU J, FAN H, WU S, et al. Characterization of temperature dependence of dielectric, elastic and piezoelectric properties of BaTiO3 ceramics. Ceramics International, 2022, 48(18): 25741. |
[11] | CHEN M, XU Z, CHU R, et al. Polymorphic phase transition and enhanced piezoelectric properties in (Ba0.9Ca0.1)(Ti1-xSnx)O3 lead- free ceramics. Materials Letters, 2013, 97: 86. |
[12] | ZHAO Q, XIAO H, GENG H F, et al. Highly-efficient piezocatalytic performance of nanocrystalline BaTi0.89Sn0.11O3 catalyst with Tc near room temperature. Nano Energy, 2021, 85: 106028. |
[13] | PETZELT J, BOVTUN V, NUZHNYY D, et al. Broadband dielectric, terahertz, and infrared spectroscopy of BaTiO3-BaZrO3 solid solution: from proper ferroelectric over diffuse and relaxor ferroelectrics and dipolar glass to normal dielectric. Physica Status Solidi (b), 2021, 258(10): 2100259. |
[14] | KATHAIT G S, MAINI S. Dielectric, Dielectric, piezoelectric and energy storage properties of Ca, Zr and Sn doped (Ba1-xCax)(Ti0.85+xZr0.02Sn0.13-x)O3 lead-free ceramics at MPB for 0.05≤x≤0.09. Materials Science and Engineering: B, 2024, 301: 117139. |
[15] | LIU W, REN X. Large piezoelectric effect in Pb-free ceramics. Physical Review Letters, 2009, 103(25): 257602. |
[16] | XUE D, ZHOU Y, BAO H, et al. Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics. Applied Physics Letters, 2011, 99(12): 122901. |
[17] | ZHU L F, ZHANG B P, ZHAO X K, et al. Enhanced piezoelectric properties of (Ba1-xCax)(Ti0.92Sn0.08)O3 lead-free ceramics. Journal of the American Ceramic Society, 2013, 96(1): 241. |
[18] | FU J, XIE A, LI T, et al. Ultrahigh piezoelectricity in (Ba,Ca)(Ti,Sn)O3 lead-free compounds with enormous domain wall contribution. Acta Materialia, 2022, 230: 117862. |
[19] | KUMAR N, KURCHANIA R, BALL R J, et al. Enhanced dielectric, ferroelectric and piezoelectric properties of lead-free (Ba,Ca)(Sn,Ti)O3 ceramics by optimisation of sintering temperature. Journal of Alloys and Compounds, 2024, 989: 174358. |
[20] | ZHAO C, WANG H, XIONG J, et al. Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M= Sn, Hf, Zr) lead-free ceramics. Dalton Transactions, 2016, 45(15): 6466. |
[21] | LIU Q F, MA J J, SHARMA M, et al. Photocatalytic, piezocatalytic, and piezo‐photocatalytic effects in ferroelectric (Ba0.875Ca0.125)(Ti0.95Sn0.05)O3 ceramics. Journal of the American Ceramic Society, 2019, 102(10): 5807. |
[22] | CHITRA, LAISHRAM R, VASHISHTHA A, et al. Effect of holmium doping on structural, electrical and piezoelectric properties of lead-free (Ba,Ca)(Ti,Sn)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30: 3965. |
[23] | WU B, XIAO D, WU J, et al. Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3-xwt% ZnO lead-free piezoelectric ceramics sintered at lower temperature. Journal of Materials Science: Materials in Electronics, 2015, 26(4): 2323. |
[24] | SONG H, PENG C, HUANG R, et al. Effect of MnO2 addition on the structure and electric properties of (Ba0.94Ca0.06)(Ti0.9Sn0.1)O3 ceramics. Ceramics International, 2018, 44(7): 7877. |
[25] | SUN Y, CHANG Y, WU J, et al. Domain structures and piezoelectric properties of low-temperature sintered (Ba0.95Ca0.05)- (Ti0.94Sn0.06)O3 ceramics with CuO additive. Materials Letters, 2016, 177: 128. |
[26] | ZHANG J L, JI P F, WU Y Q, et al. Strong piezoelectricity exhibited by large-grained BaTiO3 ceramics. Applied Physics Letters, 2014, 104(22): 222909. |
[27] | YAN S, CAO Z, LIU Q, et al. Enhanced piezoelectric activity around orthorhombic-tetragonal phase boundary in multielement codoping BaTiO3. Journal of Alloys and Compounds, 2022, 923: 166398. |
[28] | LENG H, YAN Y, LIU H, et al. Design and development of high- power piezoelectric ceramics through integration of crystallographic texturing and acceptor-doping. Acta Materialia, 2021, 206: 116610. |
[29] | MUHSEN K N D K, OSMAN R A M, IDRIS M S, et al. Effect of sintering temperature on (Ba0.85Ca0.15)(SnxZr0.1-xTi0.9)O3 for piezoelectric energy harvesting applications. Ceramics International, 2021, 47(9): 13107. |
[30] | SHARMA S, SHARMA H, KUMAR S, et al. Analysis of sintering temperature effects on structural, dielectric, ferroelectric, and piezoelectric properties of BaZr0.2Ti0.8O3 ceramics prepared by Sol-Gel method. Journal of Materials Science: Materials in Electronics, 2020, 31: 19168. |
[31] | DU J, QIU L, YANG C, et al. Structure and electrical properties in CuO-modified BCZT lead-free piezoelectric ceramics. Journal of Electroceramics, 2022, 49(3): 125. |
[32] | TSAI C, LIAO W, CHU S, et al. Investigation of the piezoelectric and anti-reduction properties of (Ba,Ca)(Ti,Sn,Hf) textured ceramics prepared under low oxygen partial pressure conditions at low sintering temperatures. Journal of the European Ceramic Society, 2021, 41(4): 2472. |
[33] | SHI S, HASHIMOTO H, SEKINO T. Optimizing the piezoelectric properties of Ba0.85Ca0.15Zr0.10Ti0.90O3 lead-free ceramics via two-step sintering. Ceramics International, 2023, 49(8): 12293. |
[34] | LIU C, ZOU J, WANG X, et al. Processing, microstructure and piezoelectric properties of Li-doped BCZT ceramics. Ceramics International, 2023, 49(3): 4119. |
[35] | MEKONNEN M A, TADESSE M Z. Low temperature sintering of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free piezoceramic with the additive of MnO2. Journal of Electroceramics, 2021, 46(3): 115. |
[36] | ZHAO L, ZHANG B, ZHOU P, et al. Effect of Li2O addition on sintering and piezoelectric properties of (Ba,Ca)(Ti,Sn)O3 lead-free piezoceramics. Journal of the European Ceramic Society, 2015, 35(2): 533. |
[37] | YU M C, TSAI C C, HONG C S, et al. Effects of LiF on the properties of (Ba,Ca)(Ti,Sn,Hf)O3-based multilayer ceramics co-fired with Ni at reduced atmosphere. Journal of the American Ceramic Society, 2023, 106(2): 1037. |
[1] | HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2024, 39(8): 887-894. |
[2] | ZHANG Xiao-Chen, WANG Xue-Mei, WANG Chun-Lei. Influences of Sintering Methods on Microstructure and Physical Property of (K,Na,Li)(Nb,Sb,Ta)O3 Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2019, 34(7): 721-726. |
[3] | Xiang-Xiong ZENG, Jin-Chao YANG, Lian ZUO, Ben-Ben YANG, Jun QIN, Zhi-Hang PENG. Li/Ce/La Multidoping on Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2019, 34(4): 379-386. |
[4] | XIA Biao-Jun, ZHOU Zhi-Yong, DONG Xian-Lin. Effect of Excessive Nb2O5 on the Sintering and Electrical Property of Lead Metaniobate Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2018, 33(11): 1248-1252. |
[5] | LONG Pei-Qing, LIU Xi-Tao, YI Zhi-Guo. Effect of Sintering Process on Microstructure and Properties of Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 Lead-free Ceramics [J]. Journal of Inorganic Materials, 2017, 32(3): 299-304. |
[6] | WU Yan-Qing, ZHANG Jia-Liang, LIU Da-Kang, SUN Dan-Dan. Physical Properties of Ba(Ti0.96Sn0.04)O3 Ceramics [J]. Journal of Inorganic Materials, 2016, 31(8): 850-854. |
[7] | SUN Hai-Qin, ZHANG Tao, ZHANG Qi-Wei, ZHANG Yin. Red Emission Properties for (Bi0.5Na0.5)TiO3:Sm3+ Lead-free Piezoelectrics [J]. Journal of Inorganic Materials, 2014, 29(8): 851-854. |
[8] | ZHANG Zhi-Qiang, LIU Zhi-Fu, LI Yong-Xiang. Preparation of 0.84(K0.48Na0.52)NbO3-0.16K0.56Li0.38NbO2.97 Lead-free Piezoelectric Ceramics by Multi-layer Process [J]. Journal of Inorganic Materials, 2014, 29(1): 23-27. |
[9] | WANG Da-Wei, ZHAO Quan-Liang, CAO Mao-Sheng, CUI Yan, ZHANG Shu-Jun. Effect of Sn Content on the Phase Structure and Electrical Properties of PbSnO3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Ternary Ceramics [J]. Journal of Inorganic Materials, 2014, 29(1): 28-32. |
[10] | JIANG Min-Hong, LIU Xin-Yu, CHEN Guo-Hua, ZHU Gui-Sheng, XU Ji-Wen, MA Jia-Feng. Effect of LiSbO3 Content on the Microstructure and Piezoelectric Properties of K0.5Na0.5NbO3 Lead-free Ceramics Doped with BiMnO3 [J]. Journal of Inorganic Materials, 2013, 28(3): 321-325. |
[11] | LI Yue-Ming, XIAO Zu-Gui, SHEN Zong-Yang, WANG Zhu-Mei, HONG Yan, PAN Tie-Zheng, Wu Fen. Effect of BaZrO3 Depant on the Structure and Electric Properties of (K0.49Na0.51)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 Lead-free Piezoceramics [J]. Journal of Inorganic Materials, 2013, 28(06): 629-634. |
[12] | CUI Ye-Rang, LIU Xin-Yu, YUAN Chang-Lai, ZHAI Xia, HU Yao-Bin, LI Ruo-Wen. Preparation and Properties of Sm2O3 Doped (Ba0.7Ca0.3)TiO3-Ba(Zr0.2Ti0.8)O3 Lead-free Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2012, 27(7): 731-734. |
[13] | LI Hai-Tao, ZHANG Bo-Ping, WEN Jiu-Ba, XU Rong-Hui, LI Qian. Influence of Compensated Li Content on Microstructure, Crystalline Phase and Electrical Properties of NKN-based Lead-free Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2012, 27(4): 385-389. |
[14] | CAI Kun-Peng, SUN Jing-Bo, LI Bo2, ZHOU Ji. Direct Write Assembly of Three-dimensional PZT Woodpile Structure [J]. Journal of Inorganic Materials, 2011, 26(5): 495-498. |
[15] | ZHU Kong-Jun, SU Li-Kui, JI Hong-Li, QIU Jin-Hao, BAI Lin, YANAGISAWA Kazumichi, KAJIYOSHI Koji. Hydrothermal Solvothermal Synthesis of (K, Na)NbO3 Lead-free Piezoelectric Ceramics and Its Properties [J]. Journal of Inorganic Materials, 2010, 25(11): 1159-1163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||