Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (10): 1107-1113.DOI: 10.15541/jim20240095
Special Issue: 【信息功能】敏感陶瓷(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
SHI Rui1,2(), LIU Wei1,2,3, LI Lin1,2, LI Huan1,2, ZHANG Zhijun1,2, RAO Guanghui1,2(
), ZHAO Jingtai1,2(
)
Received:
2024-03-04
Revised:
2024-04-17
Published:
2024-10-20
Online:
2024-05-08
Contact:
ZHAO Jingtai, professor. E-mail: jtzhao@guet.edu.cn;About author:
SHI Rui (1998-), female, Master candidate. E-mail: sr1399428@163.com
Supported by:
CLC Number:
SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials[J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113.
Fig. 1 Microstructure, morphology and element distribution of the samples (a) XRD patterns of BSGOT series samples; (b) SEM image and EDS elemental mappings of BaSr0.97Ga4O8: 0.03Tb3+
Fig. 2 Diffuse reflectance spectra of BaSrGa4O8 (a), BaSr0.99Ga4O8: 0.01Tb3+ (b), and BaSr0.97Ga4O8: 0.03Tb3+ (c) with insets showing corresponding Tauc plots
Fig. 4 Long persistent luminescence spectra (a) and decay curves (b) of BSGOT series samples Inset is the fitted line of intensity I with time for BaSr0.97Ga4O8: 0.03Tb3+. Colorful figures are available on website
Fig. 5 TL spectra of BSGOT series samples (a, b) TL spectra of BaSr0.97Ga4O8: 0.03Tb3+ at different excitation time (a) and storage time (b) after excitation; (c) TL spectra at different Tb3+ doping concentrations. Colorful figures are available on website
Fig. 6 ML spectra of BSGOT series samples (a) ML spectra at different Tb3+ doping concentrations; (b) ML emission intensity curve at different Tb3+ doping concentrations (λem = 544 nm)
[1] | SHAO P S, XIONG P X, JIANG D L, et al. Tunable and enhanced mechanoluminescence in LiYGeO4: Tb3+ via Bi3+→Tb3+ energy transfer. Journal of Materials Chemistry C, 2023, 11(6): 2120. |
[2] | HU T, GAO Y, WANG B, et al. A new class of battery-free, mechanically powered, piezoelectric Ca5Ga6O14: Tb3+ phosphors with self-recoverable luminescence. Journal of Materials Chemistry C, 2022, 10(25): 9554. |
[3] | LIU S Q, ZHENG Y T, PENG D F, et al. Near-infrared mechanoluminescence of Cr3+ doped gallate spinel and magnetoplumbite smart materials. Advanced Functional Materials, 2023, 33(3): 2209275. |
[4] | QASEM A, XIONG P P, MA Z J, et al. Recent advances in mechanoluminescence of doped zinc sulfides. Laser & Photonics Reviews, 2021, 15(12): 2100276. |
[5] | XIONG P X, HUANG B L, PENG D F, et al. Self-recoverable mechanically induced instant luminescence from Cr3+-doped LiGa5O8. Advanced Functional Materials, 2021, 31(19): 2010685. |
[6] | FREUND F T. Rocks that crackle and sparkle and glow: strange pre-earthquake phenomena. Journal of Scientific Exploration, 2003, 17(1): 37. |
[7] | SONG H, TIMILSINA S, JUNG J Y, et al. Improving the sensitivity of the mechanoluminescence composite through functionalization for structural health monitoring. ACS Applied Materials & Interfaces, 2022, 14(26): 30205. |
[8] | TERASAKI N, XU C N. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor. IEEE Sensors Journal, 2013, 13(10): 3999. |
[9] | JIA Y, YEI M, JIA W Y. Stress-induced mechanoluminescence in SrAl2O4: Eu2+, Dy3+. Optical Materials, 2006, 28(8/9): 974. |
[10] | JEONG S M, SONG S, JOO K I, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy & Environmental Science, 2014, 7(10): 3338. |
[11] | SONG Y D, XIAO J Q, ZHAO L, et al. Multi-mode mechanoluminescence of fluoride glass ceramics from rigid to flexible media toward multi-scene mechanical sensors. Journal of Materials Chemistry A, 2024, 12(5): 2796. |
[12] | CHANDRA B P, RATHORE A S. Classification of mechanoluminescence. Crystal Research and Technology, 1995, 30(7): 885. |
[13] | BÜNZLI J C G, WONG K L. Lanthanide mechanoluminescence. Journal of Rare Earths, 2018, 36(1): 1. |
[14] | CAO J L, DING S S, ZHOU Y P, et al. Unveiling the potential of sunlight-driven multifunctional blue long persistent luminescent materials via cutting-edge trap modulation strategies. Advanced Optical Materials, 2024, 12(7): 2302011. |
[15] | WU S, XIONG P X, JIANG D L, et al. Single Tb3+ ion doped ratiometric mechanoluminescence for tunable stress visualization. Chemical Engineering Journal, 2023, 469: 143961. |
[16] | XIAO Y, XIONG P X, ZHANG S, et al. Deep-red to NIR mechanoluminescence in centrosymmetric perovskite MgGeO3: Mn2+ for potential dynamic signature anti-counterfeiting. Chemical Engineering Journal, 2023, 453: 139671. |
[17] | XIAO Y, XIONG P X, LE Y K, et al. Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+ doped gallate compound. Nano Energy, 2024, 120: 109086. |
[18] | BAI Y Q, GUO X P, TIAN B R, et al. Self-charging persistent mechanoluminescence with mechanics storage and visualization activities. Advanced Science, 2022, 9(28): 2203249. |
[19] | SHAO P S, XIONG P X, XIAO Y, et al. Self-recoverable NIR mechanoluminescence from Cr3+ doped perovskite type aluminate. Advanced Powder Materials, 2024, 3(2): 100165. |
[20] | QIU X Y, LIU J Z, ZHOU B, et al. Bioinspired bimodal mechanosensors with real-time, visualized information display for intelligent control. Advanced Functional Materials, 2023, 33(21): 2300321. |
[21] | HU S H, LONG Z W, WEN Y G, et al. An orange-emitting phosphor BaSrGa4O8: Bi3+, K+ with unique one-dimensional chain structure for high index color WLEDs. Journal of the American Ceramic Society, 2020, 103(11): 6075. |
[22] |
DING S S, CHEN P H, GUO H J, et al. Crystal structure and optical performance analysis of a new type of persistent luminescence material with multi-functional application prospects. Journal of Energy Chemistry, 2022, 69: 150.
DOI |
[1] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[2] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[3] | DENG Taoli, CHEN Hexin, HEI Lingli, LI Shuxing, XIE Rongjun. Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters [J]. Journal of Inorganic Materials, 2022, 37(8): 891-896. |
[4] | GUAN Xufeng, LI Guifang, WEI Yunge. Microstructure and Thermal Quenching Characteristics of Na1-xMxCaEu(WO4)3 (M=Li, K) Red Phosphor [J]. Journal of Inorganic Materials, 2022, 37(6): 676-682. |
[5] | CAO Zhijun, LI Zaijun. Ruthenium-biocarbon Mimic Enzyme: Synthesis and Application in Colorimetric Detection of Pesticide Chlorpyrifos [J]. Journal of Inorganic Materials, 2022, 37(5): 554-560. |
[6] | LI Qi, HUANG Yi, QIAN Bin, XU Beibei, CHEN Liying, XIAO Wenge, QIU Jianrong. Photo Curing and Pressureless Sintering of Orange-emitting Glass-ceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 289-296. |
[7] | FU Mingfu, YANG Wen, LI Jiabao, DENG Shukang, ZHOU Qihang, FENG Xiaobo, YANG Peizhi. Synthesis of Orthorhombic Black Phosphorus by Chemical Vapor Transport Method [J]. Journal of Inorganic Materials, 2022, 37(10): 1102-1108. |
[8] | PENG Xinglin, LI Shuxing, LIU Zehua, YAO Xiumin, XIE Rongjun, HUANG Zhengren, LIU Xuejian. Phosphor Ceramics for High-power Solid-state Lighting [J]. Journal of Inorganic Materials, 2021, 36(8): 807-819. |
[9] | DU Aochen, DU Qiyuan, LIU Xin, YANG Yimin, XIA Chenyang, ZOU Jun, LI Jiang. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs [J]. Journal of Inorganic Materials, 2021, 36(8): 883-892. |
[10] | WANG Zhaowu, JI Haipeng, WANG Feixiang, HOU Xinghui, YI Shasha, ZHOU Ying, CHEN Deliang. Valence State Control of Manganese in MgAl2O4:Mn4+ Phosphor by Varying the Al2O3 Crystal Form [J]. Journal of Inorganic Materials, 2021, 36(5): 513-520. |
[11] | LI Jing,LIU Xiaoyue,QIU Qianfeng,LI Ling,CAO Xiaoyan. Phosphorus Sorption Characteristics on Aluminum Oxides with Different Structures [J]. Journal of Inorganic Materials, 2020, 35(9): 1005-1010. |
[12] | JI Haipeng, ZHANG Zongtao, XU Jian, TANABE Setsuhisa, CHEN Deliang, XIE Rongjun. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors [J]. Journal of Inorganic Materials, 2020, 35(8): 847-856. |
[13] | ZHU Enquan,MA Yuhua,AINIWA· Munire,SU Zhi. Adsorption-enrichment and Localized-photodegradation of Bentonite-supported Red Phosphorus Composites [J]. Journal of Inorganic Materials, 2020, 35(7): 803-808. |
[14] | LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis [J]. Journal of Inorganic Materials, 2020, 35(7): 735-747. |
[15] | ZHENG Yun,CHEN Yilin,GAO Bifen,LIN Bizhou. Progress on Phosphorene for Photocatalytic Water Splitting [J]. Journal of Inorganic Materials, 2020, 35(6): 647-653. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||