Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (11): 1292-1300.DOI: 10.15541/jim20230178
Special Issue: 【能源环境】光催化(202312); 【能源环境】污染物去除(202312)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Mengtao1(), SUO Jun1, FANG Dong1(
), YI Jianhong1, LIU Yichun1, Olim RUZIMURADOV2
Received:
2023-04-11
Revised:
2023-06-15
Published:
2023-06-25
Online:
2023-06-28
Contact:
FANG Dong, professor. E-mail: fangdong@kust.edu.cnAbout author:
WANG Mengtao (1998-), female, Master candidate. E-mail: m19988568478@163.com
Supported by:
CLC Number:
WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite[J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300.
Fig. 4 (a-c) SEM images of TiO2NTs, In9.45Sn1/TiO2NTs and ITO/TiO2NTs; (d, e) TEM images of In9.45Sn1/TiO2NTs and ITO/TiO2NTs; (f) HRTEM image recorded at the red dotted box region in (e); (f1, f2) Fast Fourier Transform images and interplanar spacing images of sample in the regions 1 and 2 of (f), respectively
Fig. 6 (a) Photocatalytic degradation of MB by TiO2NTs, In9.45Sn1/TiO2NTs and ITO/TiO2NTs; (b) Pseudo-first-order kinetic plots of MB photodegradation; (c) Photostability tests over ITO/TiO2NTs photocatalyst for the cycling photodegradation of MB
Fig. 7 (a) Instantaneous current density-time curves (i-t); (b) Photocurrent density-potential curves (J-V) (scanning rate: 10 mV/s); (c) Electrochemical impedance spectra (EIS); (d) Mott-Schottky curves (M-S) of TiO2NTs, In9.45Sn1/TiO2NTs and ITO/TiO2 NTs All electrolytes used in the above tests are 0.2 mol/L Na2SO4 aqueous solution with pH 7
Fig. 8 Tests of active species trapping during the photocatalytic reaction with sacrificial reagents of EDTA-2Na, IPA and 4-Hydroxy-TEMPO under visible optical irradiation
[1] |
CHEN J, ZENG T, CHANG S, et al. Discharged titanium oxide nanotube arrays coated with Ni as a high-performance lithium battery electrode material. Energy Technology, 2022, 10(11): 2200494.
DOI URL |
[2] |
SU C, HONG B Y, TSENG C M. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 2004, 96(3): 119.
DOI URL |
[3] |
BURASO W, LACHOM V, SIRIYA P, et al. Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Materials Research Express, 2018, 5(11): 115003.
DOI URL |
[4] |
REHAN M, LAI X, KALE G.M. Hydrothermal synthesis of titanium dioxide nanoparticles studied employing in situ energy dispersive X-ray diffraction. CrystEngComm, 2011, 13(11): 3725.
DOI URL |
[5] |
MAMAGHANI A H, HAGHIGHAT F, LEE C S. Hydrothermal/ solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: preparation, characterization, properties, and performance. Chemosphere, 2019, 219: 804.
DOI URL |
[6] |
SUN H, WANG C, PANG S, et al. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. Journal of Non-Crystalline Solids, 2008, 354(12/13): 1440.
DOI URL |
[7] |
NASSAR Z M, YÜKSELICI M H. The effect of strain and grain size on phonon and electron confinements in TiO2 thin films. Physica Status Solidi (b), 2018, 255(6): 1700636.
DOI URL |
[8] |
CHIGANE M, SHINAGAWA T, TANI J I. Preparation of titanium dioxide thin films by indirect-electrodeposition. Thin Solid Films, 2017, 628: 203.
DOI URL |
[9] | VIJAYALAKSHMI R, RAJENDRAN V. Synthesis and characterization of nano-TiO2 via different methods. Archives of Applied Science Research, 2012, 4(2): 1183. |
[10] |
HASHIMOTO K, IRIE H, FUJISHIMA A. TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 2005, 44(12R): 8269.
DOI |
[11] |
YOSHIDA T, MISU Y, YAMAMOTO M, et al. Effects of the amount of Au nanoparticles on the visible light response of TiO2 photocatalysts. Catalysis Today, 2020, 352: 34.
DOI URL |
[12] |
XIA J, DONG L, SONG H, et al. Preparation of doped TiO2 nanomaterials and their applications in photocatalysis. Bulletin of Materials Science, 2023, 46(1): 13.
DOI |
[13] |
AYDIN E B, SEZGINTÜRK M K. Indium tin oxide (ITO): a promising material in biosensing technology. TrAC Trends in Analytical Chemistry, 2017, 97: 309.
DOI URL |
[14] |
BANERJEE S, MANDAL S, BARUA A K, et al. Hierarchical indium tin oxide (ITO) nano-whiskers: electron beam deposition and sub-bandgap defect levels mediated visible light driven enhanced photocatalytic activity. Catalysis Communications, 2016, 87: 86.
DOI URL |
[15] |
WEI N, CUI H, WANG X, et al. Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: enhanced photocatalytic and gas-sensing properties. Journal of Colloid and Interface Science, 2017, 498: 263.
DOI URL |
[16] |
KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. Journal of the American Chemical Society, 2009, 131(49): 17736.
DOI PMID |
[17] |
NAIK G.V, KIM J, BOLTASSEVA A. Oxides and nitrides as alternative plasmonic materials in the optical range. Optical Materials Express, 2011, 1(6): 1090.
DOI URL |
[18] |
LI S, LIANG J, WEI P, et al. ITO@TiO2 nanoarray: an efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience, 2022, 2(4): 382.
DOI URL |
[19] |
DUNG T N, DANG TRAN C, TRINH DUC T, et al. Fabrication and characteristics of Zn1-xSnxO nanorod/ITO composite photocatalytic films. Materials Research Express, 2020, 7(4): 045504.
DOI |
[20] |
SIVASAKTHI P, SANGARANARAYANAN M V, GURUMALLESH PRABU H. Micro-nanoarchitectures of electrodeposited Ni-ITO nanocomposites on copper foil as electrocatalysts for the oxygen evolution reaction. New Journal of Chemistry, 2021, 45(11): 5146.
DOI URL |
[21] |
CHEN A, BAI S, SHI B, et al. Methane gas-sensing and catalytic oxidation activity of SnO2-In2O3 nanocomposites incorporating TiO2. Sensors and Actuators B: Chemical, 2008, 135(1): 7.
DOI URL |
[22] |
WENDERICH K, MUL G. Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chemical Reviews, 2016, 116(23): 14587.
PMID |
[23] |
CHEN L, SONG X L, REN J T, et al. Precisely modifying Co2P/ black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2022, 315: 121546.
DOI URL |
[24] |
JIANG W, QU D, AN L, et al. Deliberate construction of direct Z-scheme photocatalysts through photodeposition. Journal of Materials Chemistry A, 2019, 7(31): 18348.
DOI URL |
[25] |
SUO J, JIAO K, FANG D, et al. Visible photocatalytic properties of Ag-Ag2O/ITO NWs fabricated by mechanical injection-discharge- oxidation method. Vacuum, 2022, 204: 111338.
DOI URL |
[26] |
WANG Z, LUO C, ZHANG Y, et al. Construction of hierarchical TiO2 nanorod array/graphene/ZnO nanocomposites for high-performance photocatalysis. Journal of Materials Science, 2018, 53(22): 15376.
DOI |
[27] |
EL JOUAD Z, LOUARN G, PRAVEEN T, et al. Improved electron collection in fullerene via caesium iodide or carbonate by means of annealing in inverted organic solar cells. EPJ Photovoltaics, 2014, 5: 50401.
DOI URL |
[28] | DANG M.T, LEFEBVRE J, WUEST J.D. Recycling indium tin oxide (ITO) electrodes used in thin-film devices with adjacent hole-transport layers of metal oxides. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3373. |
[29] |
PAN Q, LI A, ZHANG Y, et al. Rational design of 3D hierarchical ternary SnO2/TiO2/BiVO4 arrays photoanode toward efficient photoe lectrochemical performance. Advanced Science, 2020, 7(3): 1902235.
DOI URL |
[30] |
WANG Z, KONG D, WANG M, et al. Sealing effect of surface porosity of Ti-P composite films on tinplates. RSC Advances, 2019, 9(23): 12990.
DOI |
[31] |
BAUER F J, BRAEUER P A B, AßMANN S, et al. Characterisation of the transition type in optical band gap analysis of in- flame soot. Combustion and Flame, 2022, 243: 111986.
DOI URL |
[32] |
NIMSHI R E, VIJAYA J J, KENNEDY L J, et al. Effective microwave assisted synthesis of CoFe2O4@TiO2@rGO ternary nanocomposites for the synergic sonophotocatalytic degradation of tetracycline and c antibiotics. Ceramics International, 2023, 49(9): 13762.
DOI URL |
[33] |
SOLTANI T, TAYYEBI A, LEE B K. Enhanced photoelectrochemical (PEC) and photocatalytic properties of visible-light reduced graphene-oxide/bismuth vanadate. Applied Surface Science, 2018, 448: 465.
DOI URL |
[34] | GU S, LI W, WANG F, et al. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: effect of heterojunction structure on the enhancement of photocatalytic activity. Applied Catalysis B: Environmental, 2015, 170: 186. |
[35] |
CHEN F, YANG Q, YAO F, et al. Synergetic transformations of multiple pollutants driven by BiVO4-catalyzed sulfite under visible light irradiation: reaction kinetics and intrinsic mechanism. Chemical Engineering Journal, 2019, 355: 624.
DOI URL |
[36] |
GHANNADI S, ABDIZADEH H, RAKHSHA A, et al. Sol-electrophoretic deposition of TiO2 nanoparticle/nanorod array for photoanode of dye-sensitized solar cell. Materials Chemistry and Physics, 2021, 258: 123893.
DOI URL |
[37] |
CHINARRO E, MORENO B, JURADO J R. Combustion synthesis and EIS characterization of TiO2-SnO2 system. Journal of the European Ceramic Society, 2007, 27(13): 3601.
DOI URL |
[38] |
CHONG L W, CHIEN H T, LEE Y L. Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications. Journal of Power Sources, 2010, 195(15): 5109.
DOI URL |
[39] |
YANG Y, LIAO S, SHI W, et al. Nitrogen-doped TiO2 (B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries. RSC Advances, 2017, 7(18): 10885.
DOI URL |
[40] |
ZHOU T, WANG J, ZHANG Y, et al. Oxygen vacancy-abundant carbon quantum dots as superfast hole transport channel for vastly improving surface charge transfer efficiency of BiVO4 photoanode. Chemical Engineering Journal, 2022, 431: 133414.
DOI URL |
[41] | WEI R B, KUANG P Y, CHENG H, et al. Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4249. |
[42] |
LUO X L, CHEN Z Y, YANG S Y, et al. Two-step hydrothermal synthesis of peanut-shaped molybdenum diselenide/bismuth vanadate (MoSe2/BiVO4) with enhanced visible-light photocatalytic activity for the degradation of glyphosate. Journal of Colloid and Interface Science, 2018, 532: 456.
DOI URL |
[43] | BI Y, YANG Y, SHI X L, et al. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4. Journal of Materials Science & Technology, 2021, 83: 102. |
[44] |
ZHANG X, CHEN C, JIANG C, et al. Construction and mechanism of Ag3PO4/UiO-66-NH2 Z-Scheme heterojunction with enhanced photocatalytic activity. Catalysis Letters, 2021, 151(3): 734.
DOI |
[45] |
BAO Y, CHEN K. Novel Z-scheme BiOBr/reduced graphene oxide/ protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism. Applied Surface Science, 2018, 437: 51.
DOI URL |
[46] |
GUO F, CHEN J, ZHAO J, et al. Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole. Chemical Engineering Journal, 2020, 386: 124014.
DOI URL |
[47] |
OHNO T, SARUKAWA K, MATSUMURA M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry, 2002, 26(9): 1167.
DOI URL |
[1] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[2] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
[3] | ZHEN Mingshuo, LIU Xiaoran, FAN Xiangqian, ZHANG Wenping, YAN Dongdong, LIU Lei, LI Chen. Electrochromic Intelligent Visual Humidity Indication System [J]. Journal of Inorganic Materials, 2024, 39(4): 432-440. |
[4] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[5] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[6] | CAI Mengyu, LI-YANG Hongmiao, YANG Caiyun, ZHOU Yuting, WU Hao. Activated Sludge Incineration Ash Derived Fenton-like Catalyst: Preparation and Degradation Performance on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1135-1142. |
[7] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[8] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[9] | CHEN Xinli, LI Yan, WANG Weisheng, SHI Zhiwen, ZHU Liqiang. Gelatin/Carboxylated Chitosan Gated Oxide Neuromorphic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 421-428. |
[10] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[11] | CHEN Yonghong, LIN Zhisheng, ZHANG Zishan, CHEN Benxia, WANG Genshui. Dielectric and MLCC Property of Modified (Sr,Ca)TiO3 Based Energy Storage Ceramic [J]. Journal of Inorganic Materials, 2022, 37(9): 976-982. |
[12] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[13] | MA Hui, TAO Jianghui, WANG Yanni, HAN Yu, WANG Yabin, DING Xiuping. Gold Nanoparticles Supported on Silica & Titania Hybrid Mesoporous Spheres and Their Catalytic Performance Regulation [J]. Journal of Inorganic Materials, 2022, 37(4): 404-412. |
[14] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[15] | SUN Peng, ZHANG Shaoning, BI Hui, DONG Wujie, HUANG Fuqiang. Tuning Nitrogen Species and Content in Carbon Materials through Constructing Variable Structures for Supercapacitors [J]. Journal of Inorganic Materials, 2021, 36(7): 766-772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||