Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (11): 1183-1192.DOI: 10.15541/jim20200083
Special Issue: 功能材料论文精选(2020)
XU Jiayue1, LI Zhichao1, PAN Yunfang1, ZHOU Ding1, WEN Feng2, MA Wenjun2
Received:
2020-02-20
Revised:
2020-03-26
Published:
2020-11-20
Online:
2020-05-20
About author:
XU Jiayue(1965-), male, professor. E-mail: xujiayue@sit.edu.cn
CLC Number:
XU Jiayue, LI Zhichao, PAN Yunfang, ZHOU Ding, WEN Feng, MA Wenjun. Research Progress of Hyperstoichiometric UO2 Crystals[J]. Journal of Inorganic Materials, 2020, 35(11): 1183-1192.
[1] 赵紫原. 新兴经济体引领世界核电发展. 中国能源报, 2019年04月08日, 第12版. [2] 李冠兴, 武胜. 核燃料. 北京:化学工业出版社, 2012. [3] SARI C, BENEDICT U, BLANK H.A study of the ternary system UO2-PuO2-Pu2O3. Journal of Nuclear Materials, 1970, 35(3): 267-277. [4] ROLSTON K.Uranium crystals could reveal future of nuclear fuel. http://phys.org/news/2013-06-uranium-crystals-reveal-future-nuclear.html. [5] SKINNER B L, BENMORE C J, WEBER R K J, [6] ALEXANDRA NAVROTSKY.Taking the measure of molten uranium oxide.Science, 2014, 346: 916-917. [7] MEEK T T, VON ROEDERN B.Semiconductor devices fabricated from actinide oxides.Vacuum, 2008, 83(1): 226-228. [8] MEEK T, HU M, HAIRE M J.Semiconductive properties of uranium oxides.Ornl, 2001, 10(6): 10-18. [9] LIERDE W V.The preparation of uranium oxde single crystals by sublimation.Journal of Nuclear Materials, 1962, 5(2): 250-253. [10] CHAPMAN A T, CLARK G W.Growth of UO2, single crystals using the floating-zone technique.Journal of the American Ceramic Society, 1965, 48(9): 494-495. [11] YOUNG C, PETROSKY J, MANN J M, [12] ROBINS R G.Uranium dioxide single crystals by electrodeposition.Journal of Nuclear Materials, 1961, 3(3): 294-301. [13] KAVAZAURI R, POKROVSKIY S A, BARANOV V G, et al.Thermal Properties of Nonstoichiometry Uranium Dioxide. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016, 130(1): 012025. [14] KRUSCHWITZ C A, MUKHOPADHYAY S, SCHWELLENBACH D, [15] KIM Y S.A thermodynamic evaluation of the U-O system from UO2 to U3O8.Journal of Nuclear Materials, 2000, 279(2/3): 173-180. [16] KVASHNINA K O, BUTORIN S M, MARTIN P, [17] WHITE J T, NELSON A T.Thermal conductivity of UO2+ [18] MOLINARI M, BRINCAT N A, ALLEN G C, [19] COLMENERO F, BONALES L J, COBOS J, [20] HIERNAUT J P, HYLAND G J, RONCHI C.Premelting transition in uranium dioxide.International Journal of Thermophysics, 1993, 14(3): 609-612. [21] HIGGS J D, THOMPSON W T, LEWIS B J, [22] OLSEN A M, SCHWERDT I J, RICHARDS B, [23] JAVED N A.Thermodynamic study of hypostoichiometric urania.Journal of Nuclear Materials, 1972, 43(3): 219-224. [24] LATTA R E, FRYXELL R E.Determinaion of solidus-liquidus temperatures in the UO2+ [25] KIM K C, OLANDER D R.Oxygen diffusion in UO2- [26] HAYWARD P J, EVANS D G, TAYLOR P, [27] 白新德, 核材料科学与工程:核材料化学. 北京: 化学工业出版社, 2007: 305-309. [28] BLANK H, RONCHI C.Electron diffraction of U4O9.Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1968, 24(6): 657-666. [29] KEIJI N.Phase transitions of U4O9. Journal of Nuclear Materials, 1974, 51(1): 126-135. [30] VAN LIERDE W, PELSMAEKERS J, LECOCQ-ROBERT A.On the phase limits of U4O9.Journal of Nuclear Materials,1970, 37(3): 276-285. [31] TEIXEIRA S R, IMAKUMA K.High temperature X-ray diffraction study of the U4O9 formation on UO2 sintered plates.Journal of Nuclear Materials, 1991, 178(1): 33-39. [32] HOEKSTRA H R, SANTORO A, SIEGEL S.The low temperature oxidation of UO2 and U4O9. Journal of Inorganic and Nuclear Chemistry, 1961, 18: 166-178. [33] ELORRIETA J M, BONALES L J, RODRIGUEZ-VILLAGRA N, [34] DESGRANGES L, BALDINOZZI G, ROUSSEAU G, [35] SIEGEL S.The crystal structure of trigonal U3O8.Acta Crystallographica, 1955, 8(10): 617-619. [36] 张延志, 汪小琳, 赖新春, 等. 不同温度下U3O8结构的XRD研究. 核化学与放射化学, 2003, 25(2): 69-73. [37] LOOPSTRA B O.The phase transition in [38] LOOPSTRA B O.The structure of [39] OLANDER D R.Oxidation of UO2 by high-pressure steam. [40] ZHANG F X, LANG M, WANG J W [41] HOEKSTRA H R, SIEGEL S, GALLAGHER F X.The uranium- oxygen system at high pressure. Journal of Inorganic & Nuclear Chemistry, 1970, 32(10): 3237-3248. [42] KOVBA L M, KOMAREVTSEVA N I, KUZ'MICHEVA E U. On the crystal structures of U13O34 and delta-U2O5.Radiokhimiya, 1979, 21(5): 754-757. [43] LOOPSTRA B O, CORDFUNKE E H P. On the structure of [44] LOOPSTRA B O, TAYLOR J C, WAUGH A B.Neutron powder profile studies of the gamma uranium trioxide phases.Journal of Solid State Chemistry, 1977, 20(1): 9-19. [45] BRINCAT N A, PARKER S C, MOLINARI M, [46] SCHOENES J.Optical properties and electronic structure of UO2.Journal of Applied Physics, 1978, 49(3): 1463-1465. [47] SHI H, CHU M, ZHANG P.Optical properties of UO2 and PuO2.Journal of Nuclear Materials, 2010, 400(2): 151-156. [48] SINGH S, GUPTA S K, SONVANE Y, [49] CHEN Q, LAI X, BAI B, [50] 陈秋云, 赖新春, 白彬, 等. UO2薄膜制备和光学常数及厚度测定. 原子能科学技术, 2010, 44(9): 1126-1130. [51] 陈秋云, 赖新春, 王小英, 等. UO2的电子结构及光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4945-4949. [52] DEVETTER B M, MYERS T L, CANNON B D, [53] ELORRIETA J M, BONALES L J, BAONZA V G, [54] MISKOWIEC A, NIEDZIELA J L, SPANO T L, [55] LIVNEH T, STERER E.Effect of pressure on the resonant multiphonon Raman scattering in UO2.Phys. Rev. B, 2006, 73: 085118-085119. [56] 吕俊波, 李赣, 郭淑兰. 非理想化学计量比氧化铀的拉曼和红外光谱. 光谱学与光谱分析, 2014, 34(2): 405-409. [57] WINTER P W.The electronic transport properties of UO2.Journal of Nuclear Materials, 1989, 161(1): 38-43. [58] MEEK T T, VON ROEDERN B, CLEM P G, [59] VON ROEDERN B, MEEK T T, HAIRE M J.Some Electrical Properties of Ion-implanted Urania--Part II. National Renewable Energy Lab., Golden, CO.(US), 2003. [60] SZE S M.Energy Bands and Carrier Concentration. Semiconductor Devices, Physics and Technology. New York: John Wiley and Sons, 1985: 18-19. [61] KEIM R, KELLER C.U Uranium: Supplement Volume C5 Uranium Dioxide, UO2, Physical Properties. Electrochemical Behavior. Springer Science & Business Media, 2013. [62] ARONSON S, RULLI J E, SCHANER B E.Electrical properties of nonstoichiometric uranium dioxide.The Journal of Chemical Physics, 1961, 35(4): 1382-1388. [63] HAMPTON R N, SAUNDERS G A, STONEHAM A M.The frequency dependent response of the electrical impedance of UO2. Journal of Nuclear Materials, 1986, 139(3): 185-190. [64] RUELLO P, PETOT-ERVAS G, PETOT C, [65] DUGAN C L, PETERSON G G, MOCK A, [66] DJERASSI H, SORRIAUX A P.Thermoelectric properties of the uranium oxide U3O8.Journal of Applied Physics, 1972, 43(3): 1275-1276. [67] AN Y Q, TAYLOR A J, CONRADSON S D, [68] YOUNG R A.Model for the electronic contribution to the thermal and transport properties of ThO2, UO2, and PuO2 in the solid and liquid phases. Journal of Nuclear Materials, 1979, 87(2/3): 283-296. [69] HARDING J H, MARTIN D G.A recommendation for the thermal conductivity of UO2.Journal of Nuclear Materials, 1989, 166(3): 223-226. [70] ARING K, SIEVERS A J.Thermal conductivity and far-infrared absorption of UO2. Journal of Applied Physics, 1967, 38(3): 1496-1498. [71] MOORE J P, MCELROY D L.Thermal conductivity of nearly stoichiometric single-crystal and polycrystalline UO2. Journal of the American Ceramic Society, 1971, 54(1): 40-46. [72] GOFRYK K, DU S, STANEK C R, [73] RONCHI C, SHEINDLIN M, MUSELLA M, [74] VLAHOVIC L, STAICU D, KÜST A, [75] CHAPMAN A T, CLARK G W.Growth of UO2, single crystals using the floating-zone technique.Journal of the American Ceramic Society, 1965, 48(9): 494-495. [76] HERRICK C C, BEHRENS R G.Growth of large uraninite and thorianite single crystal from the melt using a cold-crucible technique. Journal of Crystal Growth, 1981, 51(2): 183-189. [77] BURGETT E, DEO C, PHILLPOT S.Fuel Performance Experiments on the Atomistic Level, Studying Fuel Through Engineered Single Crystal UO2. Battelle Energy Alliance, LLC, Idaho Falls, ID(United States), 2015. [78] BUGARIS DANIEL E, ZUR LOYE HANS-CONRAD. Materials discovery by flux crystal growth: quaternary and higher order oxides. [79] MANN M, HUNT E, YOUNG C, [80] MANN J M, KOLIS J, HUNT E.Uranium Dioxide Based Crystals and Methods of Fabrication. US. 20160348267. 2016. [81] SINGH R N, COBLE R L.Growth of uranium dioxide single crystals by chemical vapor deposition. Journal of Crystal Growth, 1974, 21(2): 261-266. FAILE S P.Growth of uranium dioxide crystals using tellurium tetrachloride and argon. Journal of Crystal Growth, 1978, 43(1): 133-134. |
[1] | WANG Hao, LIU Xuechao, ZHENG Zhong, PAN Xiuhong, XU Jintao, ZHU Xinfeng, CHEN Kun, DENG Weijie, TANG Meibo, GUO Hui, GAO Pan. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger [J]. Journal of Inorganic Materials, 2024, 39(9): 1070-1076. |
[2] | JIN Min, MA Yupeng, WEI Tianran, LIN Siqi, BAI Xudong, SHI Xun, LIU Xuechao. Growth and Characterization of Large-size InSe Crystal from Non-stoichiometric Solution via a Zone Melting Method [J]. Journal of Inorganic Materials, 2024, 39(5): 554-560. |
[3] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. |
[4] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[5] | HAO Yongxin, QIN Juan, SUN Jun, YANG Jinfeng, LI Qinglian, HUANG Guijun, XU Jingjun. Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method [J]. Journal of Inorganic Materials, 2024, 39(10): 1167-1174. |
[6] | KE Xin, XIE Bingqing, WANG Zhong, ZHANG Jingguo, WANG Jianwei, LI Zhanrong, HE Huijun, WANG Limin. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles [J]. Journal of Inorganic Materials, 2024, 39(1): 17-31. |
[7] | QIN Juan, LIANG Dandan, SUN Jun, YANG Jinfeng, HAO Yongxin, LI Qinglian, ZHANG Ling, XU Jingjun. Flat Shoulder Congruent Lithium Niobate Crystals Grown by the Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(8): 978-986. |
[8] | LI Yanran, XIE Dingdong, JIANG Jie. Bionic Research on Multistage Pain Sensitization Based on Ionic Oxide Transistor Array [J]. Journal of Inorganic Materials, 2023, 38(4): 429-436. |
[9] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[10] | YANG Jiaxue, LI Wen, WANG Yan, ZHU Zhaojie, YOU Zhenyu, LI Jianfu, TU Chaoyang. Spectroscopic and Yellow Laser Features of Dy3+: Y3Al5O12 Single Crystals [J]. Journal of Inorganic Materials, 2023, 38(3): 350-356. |
[11] | WU Zhen, LI Huifang, ZHANG Zhonghan, ZHANG Zhen, LI Yang, LAN Jianghe, SU Liangbi, WU Anhua. Growth and Characterization of CeF3 Crystals for Magneto-optical Application [J]. Journal of Inorganic Materials, 2023, 38(3): 296-302. |
[12] | QI Xuejun, ZHANG Jian, CHEN Lei, WANG Shaohan, LI Xiang, DU Yong, CHEN Junfeng. Macroscopic Defects of Large Bi12GeO20 Crystals Grown Using Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2023, 38(3): 280-287. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[15] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||