 
 Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (3): 350-356.DOI: 10.15541/jim20220386
• RESEARCH LETTER • Previous Articles Next Articles
					
													YANG Jiaxue1,2( ), LI Wen1,3, WANG Yan1,4(
), LI Wen1,3, WANG Yan1,4( ), ZHU Zhaojie1,4, YOU Zhenyu1,4, LI Jianfu1,4, TU Chaoyang1,4(
), ZHU Zhaojie1,4, YOU Zhenyu1,4, LI Jianfu1,4, TU Chaoyang1,4( )
)
												  
						
						
						
					
				
Received:2022-07-05
															
							
																	Revised:2022-08-16
															
							
															
							
																	Published:2023-03-20
															
							
																	Online:2022-11-16
															
						Contact:
								WANG Yan, professor. E-mail: wy@fjirsm.ac.cn;About author:YANG Jiaxue (1995-), female, Mater candidate. E-mail: yangjiaxue@fjirsm.ac.cn				
													Supported by:CLC Number:
YANG Jiaxue, LI Wen, WANG Yan, ZHU Zhaojie, YOU Zhenyu, LI Jianfu, TU Chaoyang. Spectroscopic and Yellow Laser Features of Dy3+: Y3Al5O12 Single Crystals[J]. Journal of Inorganic Materials, 2023, 38(3): 350-356.
| Crystal | c/% (in atomic) | keff | Nc/cm-3 | α/cm-1 | σabs/cm2 | 
|---|---|---|---|---|---|
| 0.5% Dy: YAG | 0.239 | 0.478 | 3.31×1019 | 0.055 | 1.66×10-21 | 
| 1.0% Dy: YAG | 0.479 | 0.479 | 6.61×1019 | 0.103 | 1.56×10-21 | 
| 2.0% Dy: YAG | 0.970 | 0.485 | 1.33×1020 | 0.215 | 1.61×10-21 | 
| 3.0% Dy: YAG | 1.427 | 0.475 | 1.95×1020 | 0.338 | 1.73×10-21 | 
| 4.0% Dy: YAG | 1.975 | 0.494 | 2.69×1020 | 0.430 | 1.60×10-21 | 
Table 1 Concentration, effective segregation coefficient and absorption cross-section of Dy3+ in YAG crystal
| Crystal | c/% (in atomic) | keff | Nc/cm-3 | α/cm-1 | σabs/cm2 | 
|---|---|---|---|---|---|
| 0.5% Dy: YAG | 0.239 | 0.478 | 3.31×1019 | 0.055 | 1.66×10-21 | 
| 1.0% Dy: YAG | 0.479 | 0.479 | 6.61×1019 | 0.103 | 1.56×10-21 | 
| 2.0% Dy: YAG | 0.970 | 0.485 | 1.33×1020 | 0.215 | 1.61×10-21 | 
| 3.0% Dy: YAG | 1.427 | 0.475 | 1.95×1020 | 0.338 | 1.73×10-21 | 
| 4.0% Dy: YAG | 1.975 | 0.494 | 2.69×1020 | 0.430 | 1.60×10-21 | 
| 6H15/2 → | n | 0.5%Dy: YAG | 1.0%Dy: YAG | 2.0%Dy: YAG | 3.0%Dy: YAG | 4.0%Dy: YAG | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | ||||||||
| 4M17/2+6P3/2+ 4G9/2+4I9/2 | 327 | 1.89 | 0.447 | 0.298 | 0.460 | 0.320 | 0.526 | 0.323 | 0.498 | 0.327 | 0.467 | 0.341 | |||||
| 6P7/2+4I11/2 | 353 | 1.88 | 0.905 | 0.723 | 1.128 | 0.850 | 1.371 | 1.182 | 1.719 | 1.454 | 1.648 | 1.403 | |||||
| 6P5/2+4M19/2 | 367 | 1.87 | 0.733 | 0.474 | 0.806 | 0.511 | 0.907 | 0.525 | 0.898 | 0.540 | 0.918 | 0.560 | |||||
| 4K17/2+4M21/2+ 4I13/2+4F7/2 | 387 | 1.86 | 0.651 | 0.729 | 0.723 | 0.793 | 0.801 | 0.854 | 0.851 | 0.908 | 0.873 | 0.925 | |||||
| 4I15/2 | 451 | 1.85 | 0.257 | 0.178 | 0.253 | 0.191 | 0.187 | 0.191 | 0.213 | 0.192 | 0.227 | 0.199 | |||||
| 6F3/2 | 755 | 1.82 | 0.217 | 0.158 | 0.189 | 0.170 | 0.202 | 0.171 | 0.225 | 0.173 | 0.205 | 0.181 | |||||
| 6F5/2 | 804 | 1.82 | 1.083 | 0.909 | 1.140 | 0.975 | 1.266 | 0.983 | 1.252 | 0.996 | 1.228 | 1.039 | |||||
| 6F7/2 | 908 | 1.82 | 2.07 | 2.057 | 2.361 | 2.226 | 2.243 | 2.328 | 2.462 | 2.426 | 2.565 | 2.502 | |||||
| 6H7/2+6F9/2 | 1088 | 1.81 | 2.577 | 2.741 | 2.74 | 3.022 | 3.249 | 3.403 | 3.480 | 3.731 | 3.528 | 3.767 | |||||
| RMS/(×10-20, cm2) | 0.180 | 0.230 | 0.237 | 0.246 | 0.226 | ||||||||||||
| Ωt(t=2, 4, 6)/(×10-20, cm2) | Ω2=0.793 Ω4=1.284 Ω6=2.634 | Ω2=0.747 Ω4=1.520 Ω6=2.825 | Ω2=0.498 Ω4=2.155 Ω6=2.848 | Ω2=0.312 Ω4=2.674 Ω6=2.887 | Ω2=0.142 Ω4=2.573 Ω6=3.011 | ||||||||||||
Table 2 Experimental line strength, calculated line strength, and J-O intensity parameters of Dy: YAG crystals
| 6H15/2 → | n | 0.5%Dy: YAG | 1.0%Dy: YAG | 2.0%Dy: YAG | 3.0%Dy: YAG | 4.0%Dy: YAG | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | ||||||||
| 4M17/2+6P3/2+ 4G9/2+4I9/2 | 327 | 1.89 | 0.447 | 0.298 | 0.460 | 0.320 | 0.526 | 0.323 | 0.498 | 0.327 | 0.467 | 0.341 | |||||
| 6P7/2+4I11/2 | 353 | 1.88 | 0.905 | 0.723 | 1.128 | 0.850 | 1.371 | 1.182 | 1.719 | 1.454 | 1.648 | 1.403 | |||||
| 6P5/2+4M19/2 | 367 | 1.87 | 0.733 | 0.474 | 0.806 | 0.511 | 0.907 | 0.525 | 0.898 | 0.540 | 0.918 | 0.560 | |||||
| 4K17/2+4M21/2+ 4I13/2+4F7/2 | 387 | 1.86 | 0.651 | 0.729 | 0.723 | 0.793 | 0.801 | 0.854 | 0.851 | 0.908 | 0.873 | 0.925 | |||||
| 4I15/2 | 451 | 1.85 | 0.257 | 0.178 | 0.253 | 0.191 | 0.187 | 0.191 | 0.213 | 0.192 | 0.227 | 0.199 | |||||
| 6F3/2 | 755 | 1.82 | 0.217 | 0.158 | 0.189 | 0.170 | 0.202 | 0.171 | 0.225 | 0.173 | 0.205 | 0.181 | |||||
| 6F5/2 | 804 | 1.82 | 1.083 | 0.909 | 1.140 | 0.975 | 1.266 | 0.983 | 1.252 | 0.996 | 1.228 | 1.039 | |||||
| 6F7/2 | 908 | 1.82 | 2.07 | 2.057 | 2.361 | 2.226 | 2.243 | 2.328 | 2.462 | 2.426 | 2.565 | 2.502 | |||||
| 6H7/2+6F9/2 | 1088 | 1.81 | 2.577 | 2.741 | 2.74 | 3.022 | 3.249 | 3.403 | 3.480 | 3.731 | 3.528 | 3.767 | |||||
| RMS/(×10-20, cm2) | 0.180 | 0.230 | 0.237 | 0.246 | 0.226 | ||||||||||||
| Ωt(t=2, 4, 6)/(×10-20, cm2) | Ω2=0.793 Ω4=1.284 Ω6=2.634 | Ω2=0.747 Ω4=1.520 Ω6=2.825 | Ω2=0.498 Ω4=2.155 Ω6=2.848 | Ω2=0.312 Ω4=2.674 Ω6=2.887 | Ω2=0.142 Ω4=2.573 Ω6=3.011 | ||||||||||||
| 4F9/2→2S+1LJ | 0.5%Dy: YAG | 1.0%Dy: YAG | 2.0%Dy: YAG | 3.0%Dy: YAG | 4.0%Dy: YAG | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | |
| 6F1/2 | 0.08 | 0.01 | 0.10 | 0.01 | 0.14 | 0.01 | 0.17 | 0.02 | 0.16 | 0.02 | 
| 6F3/2 | 0.15 | 0.02 | 0.16 | 0.02 | 0.16 | 0.02 | 0.16 | 0.02 | 0.17 | 0.02 | 
| 6F5/2 | 1.82 | 0.20 | 1.81 | 0.19 | 1.54 | 0.15 | 1.34 | 0.13 | 1.05 | 0.10 | 
| 6F7/2 | 13.63 | 1.49 | 14.26 | 1.46 | 7.29 | 1.53 | 8.21 | 1.58 | 8.18 | 1.57 | 
| 6H5/2 | 4.02 | 0.44 | 4.58 | 0.47 | 5.78 | 0.58 | 6.78 | 0.66 | 6.67 | 0.65 | 
| 6H7/2 +6F9/2 | 54.73 | 5.96 | 59.10 | 6.04 | 49.39 | 6.71 | 56.13 | 7.19 | 55.44 | 7.10 | 
| 6H9/2 | 17.78 | 1.94 | 18.84 | 1.93 | 15.42 | 1.98 | 16.34 | 2.02 | 16.13 | 1.99 | 
| 6H11/2 | 43.30 | 4.72 | 44.21 | 4.52 | 25.93 | 4.26 | 24.99 | 4.06 | 23.05 | 3.85 | 
| 6H13/2 | 456.91 | 49.79 | 483.85 | 49.46 | 482.81 | 48.22 | 486.21 | 47.34 | 479.08 | 46.58 | 
| 6H15/2 | 325.23 | 35.44 | 351.44 | 35.92 | 365.79 | 36.54 | 379.80 | 36.98 | 392.16 | 38.13 | 
| τr/ms | 1.090 | 1.022 | 0.999 | 0.974 | 0.972 | |||||
Table 3 Spontaneous emission transition rate (A) and fluorescence branching ratio (β) of Dy: YAG crystals
| 4F9/2→2S+1LJ | 0.5%Dy: YAG | 1.0%Dy: YAG | 2.0%Dy: YAG | 3.0%Dy: YAG | 4.0%Dy: YAG | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | A/s-1 | β/% | |
| 6F1/2 | 0.08 | 0.01 | 0.10 | 0.01 | 0.14 | 0.01 | 0.17 | 0.02 | 0.16 | 0.02 | 
| 6F3/2 | 0.15 | 0.02 | 0.16 | 0.02 | 0.16 | 0.02 | 0.16 | 0.02 | 0.17 | 0.02 | 
| 6F5/2 | 1.82 | 0.20 | 1.81 | 0.19 | 1.54 | 0.15 | 1.34 | 0.13 | 1.05 | 0.10 | 
| 6F7/2 | 13.63 | 1.49 | 14.26 | 1.46 | 7.29 | 1.53 | 8.21 | 1.58 | 8.18 | 1.57 | 
| 6H5/2 | 4.02 | 0.44 | 4.58 | 0.47 | 5.78 | 0.58 | 6.78 | 0.66 | 6.67 | 0.65 | 
| 6H7/2 +6F9/2 | 54.73 | 5.96 | 59.10 | 6.04 | 49.39 | 6.71 | 56.13 | 7.19 | 55.44 | 7.10 | 
| 6H9/2 | 17.78 | 1.94 | 18.84 | 1.93 | 15.42 | 1.98 | 16.34 | 2.02 | 16.13 | 1.99 | 
| 6H11/2 | 43.30 | 4.72 | 44.21 | 4.52 | 25.93 | 4.26 | 24.99 | 4.06 | 23.05 | 3.85 | 
| 6H13/2 | 456.91 | 49.79 | 483.85 | 49.46 | 482.81 | 48.22 | 486.21 | 47.34 | 479.08 | 46.58 | 
| 6H15/2 | 325.23 | 35.44 | 351.44 | 35.92 | 365.79 | 36.54 | 379.80 | 36.98 | 392.16 | 38.13 | 
| τr/ms | 1.090 | 1.022 | 0.999 | 0.974 | 0.972 | |||||
 
																													Fig. 3 Emission spectra of YAG crystals with different Dy3+ concentrations excited by 447 nm (a) and variation of intensity of 582 nm and 4F9/2 level lifetime with Dy3+ concentrations in Dy: YAG crystals (b)
| Crystal | τr(4F9/2 level)/ms | τ(4F9/2 level)/ms | σem for yellow emission/(×10-21, cm2) | σemτ/(×10-21, cm2∙ms) | η/% | Ref. | 
|---|---|---|---|---|---|---|
| 0.5%Dy: YAG | 1.090 | 0.894 | 2.36 | 2.110 | 82.02 | This work | 
| 1.0%Dy: YAG | 1.022 | 0.823 | 2.71 | 2.230 | 80.53 | |
| 2.0%Dy: YAG | 0.999 | 0.688 | 2.66 | 1.830 | 68.87 | |
| 3.0%Dy: YAG | 0.974 | 0.571 | 2.54 | 1.450 | 58.62 | |
| 4.0%Dy: YAG | 0.972 | 0.471 | 2.49 | 1.170 | 48.46 | |
| 1.0%Dy3+: Gd3Ga3Al2O12 | 0.596 | 0.573 | 3.20 | 1.834 | 96.14 | [ | 
| 3.0%Dy3+: Lu2O3 | 0.756 | 0.112 | 7.10 | 7.952 | 14.80 | [ | 
| 2.0%Dy3+: CeF3 | 3.747 | 1.530 | 9.259 | 0.1417 | 40.83 | [ | 
| 1.0%Dy3+: GdScO3 | 0.650 | 0.459 | 4.10 | 1.882 | 70.60 | [ | 
| 2.0%Dy3+: Gd3Ga5O12 | 1.107 | 0.790 | 2.62 | 2.070 | 71.40 | [ | 
| 2.0%Dy3+: LaF3 | 1.700 | 1.370 | 7.00 | 9.590 | 80.59 | [ | 
Table 4 Emission property parameters of Dy3+ in YAG and other crystals
| Crystal | τr(4F9/2 level)/ms | τ(4F9/2 level)/ms | σem for yellow emission/(×10-21, cm2) | σemτ/(×10-21, cm2∙ms) | η/% | Ref. | 
|---|---|---|---|---|---|---|
| 0.5%Dy: YAG | 1.090 | 0.894 | 2.36 | 2.110 | 82.02 | This work | 
| 1.0%Dy: YAG | 1.022 | 0.823 | 2.71 | 2.230 | 80.53 | |
| 2.0%Dy: YAG | 0.999 | 0.688 | 2.66 | 1.830 | 68.87 | |
| 3.0%Dy: YAG | 0.974 | 0.571 | 2.54 | 1.450 | 58.62 | |
| 4.0%Dy: YAG | 0.972 | 0.471 | 2.49 | 1.170 | 48.46 | |
| 1.0%Dy3+: Gd3Ga3Al2O12 | 0.596 | 0.573 | 3.20 | 1.834 | 96.14 | [ | 
| 3.0%Dy3+: Lu2O3 | 0.756 | 0.112 | 7.10 | 7.952 | 14.80 | [ | 
| 2.0%Dy3+: CeF3 | 3.747 | 1.530 | 9.259 | 0.1417 | 40.83 | [ | 
| 1.0%Dy3+: GdScO3 | 0.650 | 0.459 | 4.10 | 1.882 | 70.60 | [ | 
| 2.0%Dy3+: Gd3Ga5O12 | 1.107 | 0.790 | 2.62 | 2.070 | 71.40 | [ | 
| 2.0%Dy3+: LaF3 | 1.700 | 1.370 | 7.00 | 9.590 | 80.59 | [ | 
| [1] | LI N, LIU B, SHI J J, et al. Research progress of rare-earth doped laser crystals in visible region. Journal of Inorganic Materials, 2019,  34(6): 573. DOI | 
| [2] | SHI Z X, WANG J, GUAN X. Multicolor upconversion emission tuning of NaY(WO4)2: Dy3+ via Er3+ doping. Journal of Inorganic Materials, 2018,  33(5): 521. DOI URL | 
| [3] | WANG Z J, LI P L, YANG Z P, et al. Luminescence characteristics of Dy3+ activated LiCaBO3 phosphor. Journal of Inorganic Materials, 2009,  24(5): 1069. DOI URL | 
| [4] | WANG M L, XU J Y, ZHANG Y, et al. Growth and thermo- luminescence properties of Dy: Bi4Si3O12 crystals. Journal of Inorganic Materials, 2016,  31(10): 1068. DOI URL | 
| [5] | CAVALLI E. Optical spectroscopy of Dy3+ in crystalline hosts: general aspects, personal considerations and some news. Optical Materials X, 2019, 1: 100014. DOI URL | 
| [6] | KRÄNKEL C, MARZAHl D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser & Photonics Rev., 2016, 10: 10548. | 
| [7] | TEMIZ S A, ATASEVEN A, DURSUN R, et al.  Successful treatment of poikiloderma of Civatte with a 577 nm pro-yellow laser. J. Cosmet. Dermatol., 2020, 19: 2769. DOI URL | 
| [8] | UZLU D, ERDÖL H, KOLA M, et al. The efficacy of subthreshold micropulse yellow laser (577 nm) in chronic central serous chorioretinopathy. Laser Med. Sci., 2020, 12: 981. | 
| [9] | PIZZOCARO M, COSTANZO G A, GODONE A, et al.  Realization of an ultrastable 578 nm laser for an Yb lattice clock. IEEE T. Ultrason. Ferr., 2012, 59: 426. DOI URL | 
| [10] | ZONG Q S, BIAN Q, MA H D, et al. The research progress of the new sodium beacon laser. Laser Technol., 2020, 44: 404. | 
| [11] | BOWMAN S R, O’CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers. Opt. Express, 2012, 20: 12906. DOI URL | 
| [12] | CAI XIUYUAN, WANG YAN, LI JIANFU, et al.  Thermal, and optical features study of Dy:YAlO3 and Dy/Tb:YAlO3 crystals for yellow laser applications. J. Lumin., 2020, 231: 117711. DOI URL | 
| [13] | LISIECKI R, SOLARZ P, NIEDŹWIEDZKI T, et al.  Gd3Ga3Al2O12 single crystal doped with dysprosium spectroscopic properties and luminescence characteristics. J. Alloys Compd., 2016, 689: 733. DOI URL | 
| [14] | SHI J J, LIU B, WANG Q G, et al.  Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy:Lu2O3 for yellow laser. Chin. Phys. B, 2018, 27: 077802. DOI URL | 
| [15] | CHEN H, LOISEAU P, AKA G. Optical properties of Dy3+-doped CaYAlO4 crystal. J. Lumin., 2018, 199: 509. DOI URL | 
| [16] | JIANG T, GONG X, CHEN Y, et al.  Spectroscopic properties of Dy3+-doped NaBi(WO4)2 crystal. J. Lumin., 2019, 210: 83. DOI URL | 
| [17] | YANG Y, ZHANG L, LI S, et al.  Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal. J. Lumin., 2019, 215: 116707. DOI URL | 
| [18] | METZ P W, MOGLIA F, REICHERT F, et al. Novel Rare Earth Solid State Lasers with Emission Wavelengths in the Visible Spectral Range. Lasers and Electro-Optics Europe, Munich, Germany, 2013: 1. | 
| [19] | BOLOGNESI G, PARISI D, CALONICO D, et al.  Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4. Opt. Lett., 2014, 39: 6628. DOI URL | 
| [20] | JU Q J, SHEN H, YAO W M, et al.  Laser diode pumped Dy: YAG yellow laser. Chin. J. Lasers, 2016, 43: 0815002. DOI URL | 
| [21] | PAN Y X, ZHOU S D, LI D Z, et al.  Growth and optical properties of Dy:Y3Al5O12 crystal. Physica B Condens. Matter, 2018, 530: 317. DOI URL | 
| [22] | XU J, SONG Q S, LIU J, et al.  Spectroscopic characteristics of Dy3+-doped Y3Al5O12 (YAG) and Y3ScAl4O12 (YSAG) garnet single crystals grown by the micro-pulling-down method. J. Lumin., 2019, 215: 116675. DOI URL | 
| [23] | YU H, SU L G, QIAN X B, et al.  Influence of Gd3+ on the optical properties of Dy3+-activated CaF2 single crystal for white LED application. J. Electron. Mater., 2019, 48: 2910. DOI | 
| [24] | XU F, FANG L Z, ZHOU X, et al.  Multi-color emission of Dy3+/Eu3+ co-doped LiLuF4 single crystals for white light-emitting devices. Opt. Mater., 2020, 108: 110222. DOI URL | 
| [25] | DING S J, LI H Y, REN H, et al.  Ultra-broad absorption band of a Dy3+-doped Gd3Sc2Al3O12 garnet crystal at around 450 nm: a potential crystal for InGaN LD-pumped all-solid-state yellow laser. CrystEngComm, 2021, 23: 5481. DOI URL | 
| [26] | JUDD B R. Optical absorption intensities of rare-earth ions. Physical Review, 1962, 127: 750. DOI URL | 
| [27] | OFELT G S. Intensities of crystal spectra of rare earth ions. Journal of Chemical Physics, 1962, 37: 511. | 
| [28] | CARNALL W T, FIELDS P R, RAJNAK K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. Chemical Physics, 1968, 49: 4424. | 
| [29] | ZELMON D E, SMALL D L, PAGE R. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm. Appl. Opt., 1998, 37: 4933. DOI URL | 
| [30] | JAYASANKAR C K, RUKMINI E. Spectroscopic investigations of Dy3+ ions in borosulphate glasses. Physica B, 1997, 240: 273. DOI URL | 
| [31] | MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl., 1992, 17: 142. DOI URL | 
| [32] | AULL B F, JENSSEN H P. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE.Quantum Elect., 1982, 18: 925. | 
| [33] | LIU J, SONG Q S, LI D Z, et al.  Crystal growth and spectroscopic characterization of Sm:LaMgAl11O19 crystal. J. Lumin., 2019, 215: 116701. DOI URL | 
| [34] | FANG P, LIU W P, ZHANG Q L, et al.  Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy:GdScO3. Lumin., 2018, 201: 176. DOI URL | 
| [35] | WANG Y, YOU Z Y, LI J F, et al.  Optical properties of Dy3+ ion in GGG laser crystal. Phys. D Appl. Phys., 2010, 43: 075402. DOI | 
| [36] | LI S M, ZHANG L H, ZHANG P X, et al.  Spectroscopic characterizations of Dy:LaF3 crystal. Infrared Phys. Techn., 2017, 87: 65. DOI URL | 
| [37] | BOWMAN S R, CONDON N J, O’CONNOR S, et al. Diode-pumped Dysprosium Laser Materials. SPIE Defense, Security, and Sensing, Orlando, Florida, United States, 2009. | 
| [38] | BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4. Optics Letters, 2014, 39: 6628. DOI URL | 
| [1] | PAN Yuzhou, HE Fajian, XU Lulu, DAI Shixun. Broadband 3 μm Mid-infrared Emission in Dy3+/Yb3+ Co-doped Tellurite Glass under 980 nm LD Excitation [J]. Journal of Inorganic Materials, 2025, 40(5): 521-528. | 
| [2] | LI Xianke, ZHANG Chaoyi, HUANG Lin, SUN Peng, LIU Bo, XU Jun, TANG Huili. High-quality Indium-doped Gallium Oxide Single Crystal Growth by Floating Zone Method [J]. Journal of Inorganic Materials, 2024, 39(12): 1384-1390. | 
| [3] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. | 
| [4] | HAO Yongxin, QIN Juan, SUN Jun, YANG Jinfeng, LI Qinglian, HUANG Guijun, XU Jingjun. Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method [J]. Journal of Inorganic Materials, 2024, 39(10): 1167-1174. | 
| [5] | QIN Juan, LIANG Dandan, SUN Jun, YANG Jinfeng, HAO Yongxin, LI Qinglian, ZHANG Ling, XU Jingjun. Flat Shoulder Congruent Lithium Niobate Crystals Grown by the Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(8): 978-986. | 
| [6] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. | 
| [7] | SHI Xiaotu, ZHANG Qingli, SUN Guihua, LUO Jianqiao, DOU Renqin, WANG Xiaofei, GAO Jinyun, ZHNAG Deming, LIU Jiandang, YE Bangjiao. Positron Annihilation Study of Yb:YAG Single Crystal Defects under Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(3): 316-321. | 
| [8] | WU Zhen, LI Huifang, ZHANG Zhonghan, ZHANG Zhen, LI Yang, LAN Jianghe, SU Liangbi, WU Anhua. Growth and Characterization of CeF3 Crystals for Magneto-optical Application [J]. Journal of Inorganic Materials, 2023, 38(3): 296-302. | 
| [9] | QI Xuejun, ZHANG Jian, CHEN Lei, WANG Shaohan, LI Xiang, DU Yong, CHEN Junfeng. Macroscopic Defects of Large Bi12GeO20 Crystals Grown Using Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2023, 38(3): 280-287. | 
| [10] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. | 
| [11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. | 
| [12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. | 
| [13] | WANG Haidong, WANG Yan, ZHU Zhaojie, LI Jianfu, LAKSHMINARAYANA Gandham, TU Chaoyang. Crystal Growth and Structural, Optical, and Visible Fluorescence Traits of Dy3+-doped SrGdGa3O7 Crystal [J]. Journal of Inorganic Materials, 2023, 38(12): 1475-1482. | 
| [14] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. | 
| [15] | XU Jiayue, LI Zhichao, PAN Yunfang, ZHOU Ding, WEN Feng, MA Wenjun. Research Progress of Hyperstoichiometric UO2 Crystals [J]. Journal of Inorganic Materials, 2020, 35(11): 1183-1192. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||