Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (1): 45-50.DOI: 10.15541/jim20210127
• TOPICAL SECTION: Green Conversion of CO2 (Contributing Editor: OUYANG Shuxin, WANG Wenzhong) • Previous Articles Next Articles
LI Bangxin1,2(), ZHANG Qian2(
), XIAO Jie2, XIAO Wenyan2, ZHOU Ying1,2
Received:
2021-03-04
Revised:
2021-05-01
Published:
2022-01-20
Online:
2021-05-25
Contact:
ZHANG Qian, associate professor. E-mail: zhangqian@swpu.edu.cn
About author:
LI Bangxin(1995-), male, Master candidate. E-mail: 1449569638@qq.com
Supported by:
CLC Number:
LI Bangxin, ZHANG Qian, XIAO Jie, XIAO Wenyan, ZHOU Ying. Iron-doping Enhanced Basic Nickel Carbonate for Moisture Resistance and Catalytic Performance of Ozone Decomposition[J]. Journal of Inorganic Materials, 2022, 37(1): 45-50.
Fig. 2 (a) SEM image of NiCH-Fe5% and corresponding EDS mappings of (b) Ni and (c) Fe elements, TEM images of (d) NiCH and (e) NiCH-Fe5%, and (f) HRTEM image of NiCH-Fe5%
Molecule | Site | NiCH | NiCH-Fe |
---|---|---|---|
O3 | Ni | -0.36 eV | -0.57 eV |
Fe(Ni) | -0.02 eV(Ni) | -1.93eV(Fe) | |
O1 | -0.28 eV | -0.61 eV | |
O2 | -0.69 eV | -0.46 eV | |
H2O | Ni | -0.15 eV | -0.41 eV |
Fe(Ni) | -0.24 eV(Ni) | -0.55 eV(Fe) |
Table 1 Adsorption energy of ozone and H2O on different sites of NiCH and NiCH-Fe5%
Molecule | Site | NiCH | NiCH-Fe |
---|---|---|---|
O3 | Ni | -0.36 eV | -0.57 eV |
Fe(Ni) | -0.02 eV(Ni) | -1.93eV(Fe) | |
O1 | -0.28 eV | -0.61 eV | |
O2 | -0.69 eV | -0.46 eV | |
H2O | Ni | -0.15 eV | -0.41 eV |
Fe(Ni) | -0.24 eV(Ni) | -0.55 eV(Fe) |
[1] |
MULLINS J T. Ambient air pollution and human performance: contemporaneous and acclimatization effects of ozone exposure on athletic performance. Health Economics, 2018, 27(8):1189-1200.
DOI URL |
[2] | FU P F, CHEN S J. Indoor air pollution caused by ozone reactions and problems in disinfection and purification by using ozone air cleaners. Journal of Beijing Union University (Natural Sciences), 2006, 20(3):73-75. |
[3] | SHAO G M. The hazards of ozone pollution and protective measure in copy room. Contamination Control Air conditioning Technology, 2017, 02:80-83. |
[4] |
WU F, ZHAO Z Y, LI B X, et al. Interfacial oxygen vacancy of Bi2O2CO3/PPy and its visible-light photocatalytic NO oxidation mechanism. Journal of Inorganic Materials, 2020, 35(5):541-548.
DOI URL |
[5] | ZHANG R Y, LI C J, ZHANG A L, et al. Research progress on the preparation and application of monolithic photocatalysts. Materials Reports, 2020, 34(3):3001-3016. |
[6] | CAO Y H, ZHENG Q, RAO Z Q, et al. InP quantum dots on g-C3N4 nanosheets to promote molecular oxygen activation under visible light. Chinese Chemical Letters, 2020, 32(10):2689-2692. |
[7] |
WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Science of The Total Environment, 2017, 575:1582-1596.
DOI URL |
[8] |
LI X T, MA J Z, HE H. Tuning the chemical state of silver on Ag-Mn catalysts to enhance the ozone decomposition performance. Environmental Science & Technology, 2020, 54(18):11566-11575.
DOI URL |
[9] |
DHANDAPANI B, OYAMA S T. Gas phase ozone decomposition catalysts. Applied Catalysis B: Environmental, 1997, 11(2):129-166.
DOI URL |
[10] | JIA J B, ZHANG P Y. Catalytic decomposition of airborne ozone by MnCO3 and its mechanism. Ozone: Science & Engineering, 2018, 40(1):21-28. |
[11] |
LIAN Z H, MA J Z, HE H. Decomposition of high-level ozone under high humidity over Mn-Fe catalyst: The influence of iron precursors. Catalysis Communications, 2015, 59:156-160.
DOI URL |
[12] |
YANG Y J, ZHANG P Y, JIA J B. Vanadium-doped MnO2 for efficient room-temperature catalytic decomposition of ozone in air. Applied Surface Science, 2019, 484:45-53.
DOI URL |
[13] |
GONG S Y, CHEN J Y, WU X F, et al. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catalysis Communications, 2018, 106:25-29.
DOI URL |
[14] |
JIA J B, ZHANG P Y, CHEN L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Applied Catalysis B: Environmental, 2016, 189:210-218.
DOI URL |
[15] | YU H F. Catalytic decompostion of ozone over monolithic catalysts with deferect ninch salt precursors. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2019, 40(6):27-30. |
[16] |
SPINELLA K, MOSIELLO L, PALLESCHI G, et al. Development of a QCM (Quartz Crystal Microbalance) biosensor to the detection of aflatoxin B1. Open Journal of Applied Biosensor, 2013, 2(4):112-119.
DOI URL |
[17] |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6):567-570.
DOI URL |
[18] | DAI S G, ZHANG Z F, XU J M, et al. In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy, 2019, 64: 103919-1-9. |
[19] | YU Z M, SU X L, WEI D H, et al. Tiny basic nickel carbonate arrays/reduced graphene oxide composite for high-efficiency supercapacitor application. Nano, 2019, 14(4):96-103. |
[20] |
XI C Y, ZHU G X, LIU Y J, et al. Belt-like nickel hydroxide carbonate/ reduced graphene oxide hybrids: synthesis and performance as supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538:748-756.
DOI URL |
[21] |
BIESINGER M C, PAYNE B P, LAU L W M, et al. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surface and Interface Analysis, 2009, 41(4):324-332.
DOI URL |
[22] |
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008, 254(8):2441-2449.
DOI URL |
[23] |
STOYANOVA M, KONOVA P, NIKOLOV P, et al. Alumina- supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs. Chemical Engineering Journal, 2006, 122(1/2):41-46.
DOI URL |
[24] |
HU C W, YAMADA Y, YOSHIMURA K. Fabrication of nickel oxyhydroxide/palladium (NiOOH/Pd) nanocomposite for gasochromic application. Solar Energy Materials and Solar Cells, 2018, 177:120-127.
DOI URL |
[25] |
ABBASI A, SARDROODI J J. Application of TiO2-supported Au for ozone molecule removal from environment: a van der Waals- corrected DFT study. International Journal of Environmental Science and Technology, 2019, 16(7):3483-3496.
DOI URL |
[1] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. |
[2] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
[3] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[4] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[5] | PAN Yuzhou, HE Fajian, XU Lulu, DAI Shixun. Broadband 3 μm Mid-infrared Emission in Dy3+/Yb3+ Co-doped Tellurite Glass under 980 nm LD Excitation [J]. Journal of Inorganic Materials, 2025, 40(5): 521-528. |
[6] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[7] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[8] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[9] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[10] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[11] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[12] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
[13] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[14] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[15] | LI Guanglan, WANG Tianyu, LIU Yichen, LU Zhongfa. Layered NiFeCo-LDH-Ti6C3.75 Catalyst: Preparation and Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2023, 38(7): 823-829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||