Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (3): 293-300.DOI: 10.15541/jim20190381
Special Issue: 2020年环境材料论文精选(二)重金属元素去除
Previous Articles Next Articles
DONG Lijia1,GUO Xiaojie2,LI Xue1,CHEN Chaogui1,JIN Yang1(),AHMED Alsaedi3,TASAWAR Hayat3,4,ZHAO Qingzhou5,SHENG Guodong6(
)
Received:
2019-07-24
Revised:
2019-09-11
Published:
2020-03-20
Online:
2019-09-20
About author:
DONG Lijia(1984-), female, PhD. E-mail: Donglijia@126.com
Supported by:
CLC Number:
DONG Lijia, GUO Xiaojie, LI Xue, CHEN Chaogui, JIN Yang, AHMED Alsaedi, TASAWAR Hayat, ZHAO Qingzhou, SHENG Guodong. Microscopic Insights into pH-dependent Adsorption of Cd(II) on Molybdenum Disulfide Nanosheets[J]. Journal of Inorganic Materials, 2020, 35(3): 293-300.
Fig. S1 SEM image (a), TEM image (b), XRD pattern (c), FT-IR spectrum (d), Zeta potentials (e), and height cross-section profile (inset) and corresponding AFM image (f) of MoS2 samples
Fig. 3 Cd(II) adsorption on MoS2 nanosheets as a function of contact time (a) and the fitting of pseudo-first-order kinetic model (b), pseudo-second-order kinetic model (c) and intra-particle diffusion model (d) at different pH Cd(II) initial concentration=10 mg/L, m/V=0.15 g/L, I=0.01 mol/L NaNO3, T=293 K
Fig. S2 Adsorption isotherms (a) and fitting results of Langmuir (b) and Freundlich (c) sorption isotherms of Cd(II) sorption on MoS2 at different temperatures and different pH Cd(II) initial concentration=10 mg/L, m/V=0.15 g/L, I = 0.01 mol/L NaNO3
Fig. S3 Linear plots of lnKd versus Ce for Cd(II) at different temperatures and different pH(a), and linear regression plots of lnKθ versus 1/T for Cd(II) sorption on MoS2 at different pH(b) Cd(II) initial concentration=10 mg/L, m/V=0.15 g/L, I=0.01 mol/L NaNO3
pH | T/K | KF/(mg1-n·Ln∙g-1) | n | R2 | |
---|---|---|---|---|---|
Freundlich equation | 4.55 | 293 | 1.624 | 1.440 | 0.887 |
313 | 4.256 | 1.160 | 0.881 | ||
333 | 7.461 | 1.052 | 0.904 | ||
5.34 | 293 | 9.363 | 0.899 | 0.801 | |
313 | 21.627 | 0.603 | 0.907 | ||
333 | 32.734 | 0.526 | 0.939 | ||
6.12 | 293 | 17.298 | 0.650 | 0.812 | |
313 | 28.054 | 0.542 | 0.935 | ||
333 | 34.119 | 0.499 | 0.919 | ||
pH | T/K | qmax /(mg∙g-1) | KL /(L∙mg-1) | R2 | |
Langmuir equation | 4.55 | 293 | 0.040 | 64.516 | 0.299 |
313 | 0.016 | 305.157 | 0.069 | ||
333 | 0.001 | 754.717 | 0.017 | ||
5.34 | 293 | 0.036 | 262.536 | 0.162 | |
313 | 0.132 | 149.276 | 0.918 | ||
333 | 0.236 | 147.580 | 0.978 | ||
6.12 | 293 | 0.114 | 140.449 | 0.759 | |
313 | 0.172 | 152.022 | 0.974 | ||
333 | 0.224 | 151.492 | 0.978 |
pH | T/K | KF/(mg1-n·Ln∙g-1) | n | R2 | |
---|---|---|---|---|---|
Freundlich equation | 4.55 | 293 | 1.624 | 1.440 | 0.887 |
313 | 4.256 | 1.160 | 0.881 | ||
333 | 7.461 | 1.052 | 0.904 | ||
5.34 | 293 | 9.363 | 0.899 | 0.801 | |
313 | 21.627 | 0.603 | 0.907 | ||
333 | 32.734 | 0.526 | 0.939 | ||
6.12 | 293 | 17.298 | 0.650 | 0.812 | |
313 | 28.054 | 0.542 | 0.935 | ||
333 | 34.119 | 0.499 | 0.919 | ||
pH | T/K | qmax /(mg∙g-1) | KL /(L∙mg-1) | R2 | |
Langmuir equation | 4.55 | 293 | 0.040 | 64.516 | 0.299 |
313 | 0.016 | 305.157 | 0.069 | ||
333 | 0.001 | 754.717 | 0.017 | ||
5.34 | 293 | 0.036 | 262.536 | 0.162 | |
313 | 0.132 | 149.276 | 0.918 | ||
333 | 0.236 | 147.580 | 0.978 | ||
6.12 | 293 | 0.114 | 140.449 | 0.759 | |
313 | 0.172 | 152.022 | 0.974 | ||
333 | 0.224 | 151.492 | 0.978 |
pH | qe/(mg·g-1) | k1/h-1 | R2 | |
---|---|---|---|---|
4.55 | 33.023 | 0.059 | 0.9896 | |
Pseudo-first- order model | 5.34 | 23.903 | 0.053 | 0.9069 |
6.12 | 41.777 | 0.074 | 0.9835 | |
pH | qe/(mg·g-1) | k2/(g·mg-1·h-1) | R2 | |
4.55 | 35.638 | 0.038 | 0.9869 | |
Pseudo-second- order model | 5.34 | 42.230 | 0.078 | 0.9978 |
6.12 | 52.659 | 0.077 | 0.9986 | |
pH | C/(mg·L-1) | ki/(g·mg-1·h-1/2) | R2 | |
4.55 | 19.985 | 2.628 | 0.942 | |
Intra-particle diffusion model | 5.34 | 32.500 | 1.877 | 0.987 |
6.12 | 39.759 | 3.004 | 0.980 |
pH | qe/(mg·g-1) | k1/h-1 | R2 | |
---|---|---|---|---|
4.55 | 33.023 | 0.059 | 0.9896 | |
Pseudo-first- order model | 5.34 | 23.903 | 0.053 | 0.9069 |
6.12 | 41.777 | 0.074 | 0.9835 | |
pH | qe/(mg·g-1) | k2/(g·mg-1·h-1) | R2 | |
4.55 | 35.638 | 0.038 | 0.9869 | |
Pseudo-second- order model | 5.34 | 42.230 | 0.078 | 0.9978 |
6.12 | 52.659 | 0.077 | 0.9986 | |
pH | C/(mg·L-1) | ki/(g·mg-1·h-1/2) | R2 | |
4.55 | 19.985 | 2.628 | 0.942 | |
Intra-particle diffusion model | 5.34 | 32.500 | 1.877 | 0.987 |
6.12 | 39.759 | 3.004 | 0.980 |
Fig. 4 Normalized, background-subtracted and k3-weighted EXAFS spectra (a) and corresponding RSF magnitudes and imaginary parts (b) of Cd reference samples
pH | T | ΔGθ/(kJ/mg) | ΔSθ/(J∙mg-1· K-1) | ΔHθ/(kJ∙mg-1) |
---|---|---|---|---|
4.55 | 293 | -19.291 | 143.66592 | 22.803 |
313 | -22.333 | 22.635 | ||
333 | -25.022 | 22.818 | ||
5.34 | 293 | -22.331 | 147.73978 | 20.957 |
313 | -25.312 | 20.930 | ||
333 | -28.239 | 20.958 | ||
6.12 | 293 | -23.412 | 121.71696 | 12.251 |
313 | -25.986 | 12.111 | ||
333 | -28.267 | 12.265 |
pH | T | ΔGθ/(kJ/mg) | ΔSθ/(J∙mg-1· K-1) | ΔHθ/(kJ∙mg-1) |
---|---|---|---|---|
4.55 | 293 | -19.291 | 143.66592 | 22.803 |
313 | -22.333 | 22.635 | ||
333 | -25.022 | 22.818 | ||
5.34 | 293 | -22.331 | 147.73978 | 20.957 |
313 | -25.312 | 20.930 | ||
333 | -28.239 | 20.958 | ||
6.12 | 293 | -23.412 | 121.71696 | 12.251 |
313 | -25.986 | 12.111 | ||
333 | -28.267 | 12.265 |
Sample conditions | shells | R/nm | CN | σ2 /nm2 |
---|---|---|---|---|
Cd(NO3)2(aq) | Cd-O | 0.233(4) | 6.2(3) | 0.0010(1) |
Cd(OH)2 | Cd-O | 0.238(2) | 6.1(4) | 0.0014(5) |
Cd-Cd | 0.359(3) | 5.9(4) | 0.0032(5) | |
CdS | Cd-S | 0.259(1) | 4.1(3) | 0.0024(2) |
pH 3.56, sorption | Cd-S | 0.255(2) | 3.9(5) | 0.0027(3) |
pH 6.48, sorption | Cd-S | 0.257(1) | 3.8(4) | 0.0023(5) |
pH 9.57, sorption | Cd-O | 0..34(5) | 5.9(6) | 0.0016(3) |
Cd-Cd | 0.357(3) | 5.6(4) | 0.0037(2) |
Sample conditions | shells | R/nm | CN | σ2 /nm2 |
---|---|---|---|---|
Cd(NO3)2(aq) | Cd-O | 0.233(4) | 6.2(3) | 0.0010(1) |
Cd(OH)2 | Cd-O | 0.238(2) | 6.1(4) | 0.0014(5) |
Cd-Cd | 0.359(3) | 5.9(4) | 0.0032(5) | |
CdS | Cd-S | 0.259(1) | 4.1(3) | 0.0024(2) |
pH 3.56, sorption | Cd-S | 0.255(2) | 3.9(5) | 0.0027(3) |
pH 6.48, sorption | Cd-S | 0.257(1) | 3.8(4) | 0.0023(5) |
pH 9.57, sorption | Cd-O | 0..34(5) | 5.9(6) | 0.0016(3) |
Cd-Cd | 0.357(3) | 5.6(4) | 0.0037(2) |
[1] | ZENG G, LIU Y, TANG L , et al. Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chem. Eng. J., 2015,259:153-160. |
[2] | YANG G, TANG L, LEI X , et al. Cd(II) removal from aqueous solution by adsorption on ketoglutaric acid-modified magnetic chitosan. Appl. Surf. Sci., 2014,292:710-716. |
[3] | LUO L, MA Y B, ZHANG S Z , et al. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manage, 2009,90(8):2524-2530. |
[4] | KHAN T A, CHAUDHRY S A, ALI I . Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J. Mol. Liq., 2015,202:165-175. |
[5] | AWUAL M R, KHRAISHEH M, ALHARTHI N H , et al. Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem. Eng. J., 2018,343:118-127. |
[6] | LIAO Q, ZOU D, PAN W , et al. Highly-efficient scavenging of P(V), Cr(VI), Re(VII) anions onto g-C3N4 nanosheets from aqueous solutions as impacted via water chemistry. J. Mol. Liq., 2018,258:275-284. |
[7] | DONG L, YANG J, MOU Y , et al. Effect of various environmental factors on the adsorption of U(VI) onto biochar derived from rice straw. J. Radioanal. Nucl. Chem., 2017,314(1):377-386. |
[8] | SHENG G D, YANG Q, PENG F , et al. Determination of colloidal pyrolusite, Eu(III) and humic substance interaction: a combined batch and EXAFS approach. Chem. Eng. J., 2014,245:10-16. |
[9] | YU S J, WANG X X, PANG H W , et al. Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem. Eng. J., 2018,333:343-360. |
[10] | YAO W, WANG X, LIANG Y , et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies. Chem. Eng. J., 2018,332:775-786. |
[11] | WANG J, WANG X X, ZHAO G X , et al. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions. Chem. Eng. J., 2018,334:569-578. |
[12] | LIAO Q, ZOU D S, PAN W , et al. Highly efficient capture of Eu(III), La(III), Nd(III), Th(IV) from aqueous solutions using g-C3N4 nanosheets. J. Mol. Liq., 2018,252:351-361. |
[13] | WANG X X, YU S J, WANG X K . Removal of radionuclides by metal-organic framework-based materials. J. Inorg. Mater., 2019,34(1):17-26. |
[14] | WANG N, PANG H, YU S , et al. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: a review. Acta Chim. Sinica, 2019,77(2):143-152. |
[15] | LIU X, MA R, WANG X , et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ. Pollut., 2019,252:62-73. |
[16] | WANG X X, CHEN L, WANG L , et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem., 2019,62(8):933-967. |
[17] | FENG B, YAO C, CHEN S , et al. Highly efficient and selective recovery of Au(III) from a complex system by molybdenum disulfide nanoflakes. Chem. Eng. J., 2018,350:692-702. |
[18] | CHEN H J, HUANG J, LEI X L , et al. Adsorption and diffusion of lithium on MoS2 monolayer: the role of strain and concentration. Int. J. Electrochem. Sci., 2013,8:2196-2203. |
[19] | JIA F, WANG Q, WU J , et al. Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg+ from water. ACS Sustainable Chem. Eng., 2017,5:7410-7419. |
[20] | JIA F, ZHANG X, SONG S . AFM study on the adsorption of Hg 2+ on natural molybdenum disulfide in aqueous solutions . Phys. Chem. Chem. Phys., 2017,19:3837-3844. |
[21] | WANG Z, MI B . Environmental applications of 2D molybdenum disulfide (MoS2) nanosheet. Environ. Sci. Technol., 2017,51:8229-8244. |
[22] | AI K, RUAN C, SHEN M , et al. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Funct. Mater., 2016,26:5542-5549. |
[23] | TONG S, DENG H, WANG L , et al. Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chem. Eng. J., 2018,335:22-31. |
[24] | LI X, LI Q, LINGHU W , et al. Sorption properties of U(VI) and Th(IV) on two-dimensional molybdenum disulfide (MoS2) nanosheets: effects of pH, ionic strength, contact time, humic acids and temperature. Environ. Technol. Innov., 2018,11:328-338. |
[25] | WANG Q, YANG L, JIA F , et al. Removal of Cd(II) from water by using nano-scale molybdenum disulphide sheets as adsorbents. J. Mol. Liq., 2018,263:526-533. |
[26] | ZHI L, ZUO W, CHEN F , et al. 3D MoS2 composition aerogel as chemosensors and adsorbents for colorimetric detection and high- capacity adsorption of Hg2+. ACS Sustain. Chem. Eng., 2016,4:3398-3408. |
[27] | AI K, RUAN C, SHEN M , et al. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Funct. Mater., 2016,26:5542-5549. |
[28] | AGHAGOLI M J, BEYKI M H, SHEMIRANI F . Application of dahlia-like molybdenum disulfide nanosheets for solid phase extraction of Co(II) in vegetable and water samples. Food Chem., 2017,223:8-15. |
[29] | GAO X, SHENG G D, HUANG Y Y . Mechanism and microstructure of Eu(III) interaction with γ-MnOOH by a combination of batch and high resolution EXAFS investigation. Sci. China Chem., 2013,56:1658-1666. |
[30] | DONG L, LIAO Q, LINGHU W , et al. Application of EXAFS with a bent crystal analyzer to study the pH-dependent microstructure of Eu(III) onto birnessite. J. Environ. Chem. Eng., 2018,6:842-848. |
[31] | VASCONCELOS I F, HAACK E A, MAURICE P A , et al. EXAFS analysis of cadmium(II) adsorption to kaolinite. Chem. Geol., 2008,249:237-249. |
[32] | LIU C, FRENKEL A I, VAIRAVAMURTHY A , et al. Sorption of cadmium on humic acid: mechanistic and kinetic studies with atomic force microscopy and X-ray absorption fine structure spectroscopy. Can. J. Soil Sci., 2001,81:337-348. |
[33] | SHENG G D, YANG S T, LI Y M , et al. Retention mechanisms and microstructure of Eu(III) on manganese dioxides studied by batch and high resolution EXAFS technique. Radiochim. Acta, 2014,102:155-167. |
[34] | COLEMAN J N, LOTYA M, O’NEILL A , et al. Two dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011,331(6017):568-571. |
[35] | SPLENDIANI A, SUN L, ZHANG Y , et al. Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010,10:1271-1275. |
[36] | KUMAR A S K, JIANG S J, WARCHOL J K . Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III). ACS Omega, 2017,2:6187-6200. |
[37] | TAKAMATSU R, ASAKURA K, CHUN W J , et al. EXAFS studies about the sorption of cadmium ions on montmorillonite. Chem. Lett., 2006,35:224-225. |
[38] | HUANG X, CHEN T, ZOU X , et al. The adsorption of Cd(II) on manganese oxide investigated by batch and modeling techniques. Int. J. Environ. Res. Public Health, 2017,14(10):1145. |
[39] | GUECHI E, BEGGAS D . Removal of cadmium (II) from water using fibre fruit lufa as biosorbent. Desalin. Water Treat., 2017,94:181-188. |
[40] | ABASIYAN S M A, MAHDANINIA G R . Polyvinyl alcohol- based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium. Environ. Sci. Poll. Res., 2018,25:14977-14988. |
[41] | CORBETT J F . Pseudo first-order kinetics. J. Chem. Educ., 1972,49:663. |
[42] | HO Y S, MCKAY G . A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process. Saf. Environ., 1998,76:332-340. |
[43] | GRAAF G H, SCHOLTENS H, STAMHUIS E J , et al. Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem. Eng. Sci., 1990,45:773-783. |
[44] | HO Y S, MCKAY G . The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Rer., 2000,34:735-742. |
[45] | TEMKIN M J, PYZHEV V . Recent modifications to Langmuir isotherms. Acta Physchim, 1940,12:217-222. |
[46] | XUE C, QI P S, LIU Y Z . Adsorption of aquatic Cd 2+ using a combination of bacteria and modified carbon fiber . Adsorpt. Sci. Technol., 2017,36:857-871. |
[47] | GU P, ZHANG S, ZHANG C , et al. Two-dimensional MAX- derived titanate nanostructures for efficient removal of Pb(II). Dalton Trans., 2019,48(6):2100-2107. |
[48] | CHEN W, LU Z, XIAO B , et al. Enhanced removal of lead ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping. J. Clean. Prod., 2019,211:1250-1258. |
[49] | ZHANG D, NIU H Y, ZHANG X L , et al. Strong adsorption of chlorotetracycline on magnetite nanoparticles. J. Hazard. Mater., 2011,192:1088-1093. |
[50] | ZHANG H, YU X, CHEN L , et al. Study of 63Ni adsorption on NKF-6 zeolite. J. Environ. Radioact., 2010,101:1061-1069. |
[51] | BEKCI Z, SEKI Y, YURDAKOC M K . A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10. J. Mol. Struct., 2007,827:67-74. |
[52] | GRÄFE M, SINGH B, BALASUBRAMANIAN M . Surface speciation of Cd(II) and Pb(II) on kaolinite by EXAFS spectroscopy. J. Colloid Interf. Sci., 2007,315:21-32. |
[53] | SHENG G, DONG H, SHEN R , et al. Microscopic insights into the temperature dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. Chem. Eng. J., 2013,217:486-494. |
[1] | WANG Hao, LIU Xuechao, ZHENG Zhong, PAN Xiuhong, XU Jintao, ZHU Xinfeng, CHEN Kun, DENG Weijie, TANG Meibo, GUO Hui, GAO Pan. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger [J]. Journal of Inorganic Materials, 2024, 39(9): 1070-1076. |
[2] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[5] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[6] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[7] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[8] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[9] | WU Xiangquan, TENG Jiachen, JI Xiangxu, HAO Yubo, ZHANG Zhongming, XU Chunjie. Textured Porous Al2O3-SiO2 Composite Ceramic Platelet-sphere Slurry: Characteristics and Simulation of Light Intensity Distribution [J]. Journal of Inorganic Materials, 2024, 39(7): 769-778. |
[10] | WANG Kanglong, YIN Jie, CHEN Xiao, WANG Li, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics Prepared by Selective Laser Sintering Printing Combined with Solid-phase Sintering at Atmospheric Pressure [J]. Journal of Inorganic Materials, 2024, 39(7): 754-760. |
[11] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[12] | LI Liuyuan, HUANG Kaiming, ZHAO Xiuyi, LIU Huichao, WANG Chao. Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates [J]. Journal of Inorganic Materials, 2024, 39(7): 793-802. |
[13] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[14] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[15] | LIU Yan, QIN Xianpeng, GAN Lin, ZHOU Guohong, ZHANG Tianjin, WANG Shiwei, CHEN Hetuo. Preparation of Sub-micron Spherical Y2O3 Particles and Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 691-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||