Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (6): 573-589.DOI: 10.15541/jim20180403
Na LI1,Bin LIU1,Jiao-Jiao SHI1,Yan-Yan XUE1,Heng-Yu ZHAO1,Zhang-Li SHI1,Wen-Tao HOU1,Xiao-Dong XU2(),Jun Xu1(
)
Received:
2018-09-03
Revised:
2018-10-10
Published:
2019-06-20
Online:
2019-05-23
Supported by:
CLC Number:
Na LI, Bin LIU, Jiao-Jiao SHI, Yan-Yan XUE, Heng-Yu ZHAO, Zhang-Li SHI, Wen-Tao HOU, Xiao-Dong XU, Jun Xu. Research Progress of Rare-earth Doped Laser Crystals in Visible Region[J]. Journal of Inorganic Materials, 2019, 34(6): 573-589.
Transitions | Parameters | LLF | YLF | GLF | LaF3 | BYF | LMA | ASL | YAP | SRA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Absorption | ||||||||||||
3H4→3P2 | labs/nm σabs /(×10-20, cm2) FWHMabs /nm | 444 10.3 1.70 | 444 9.0 1.80 | 444 7.8 1.9 | 442 1.6 5 | 445 3.7 - | 444 1.2 7.1 | 444 1.3 - | 449 5.64 5.6 | 445 1.14 9.59 | ||
Emission | ||||||||||||
3P1→3H5 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 522 3 ~2 113.7 | 522 3 ~2 107.1 | 522 3 1 130.8 | 537 0.7 ~3 35.7 | 522 0.4 ~4 17.9 | 530 0.25 4 8.6 | 542 2 - 76 | 533 8.8 1.9 168.6 | 525 1.35 9.8 41.5 | ||
3P0→3H6 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 607 12 ~3 454.8 | 607 14 ~3 499.8 | 607 13 - 566.8 | 610 2.9 ~6.9 147.9 | 607 24.7 1.2 1062.1 | 625 3.7 11 127.7 | 620 2.9 - 110.2 | 621 25.01 1.56 479.2 | 622 3.52 6.53 108.3 | ||
3P0→3F2 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 640 21 ~0.7 795.9 | 640 22 ~0.7 785.4 | 640 23 - 1003 | 635 1.2 ~1 61.2 | 639 12.1 0.6 520.3 | 647 2.3 6.6 79.4 | 643 8.5 - 323 | 662 4.71 1.28 90.2 | 644 10.37 5.07 319.0 | ||
3P0→3F4 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 720 7 ~1 265.3 | 720 9 ~1 321.3 | 720 16 - 697.6 | 720 6.6 ~3 336.6 | 721 7.3 1.3 309.6 | 728 3.3 8.5 113.9 | 725 11 - 418 | 747 10.37 1.54 198.7 | 725 5.75 4.35 176.9 | ||
τf/μs | 37.90 | 35.70 | 43.6 | 51 | 43 | 34.5 | 38 | 19.16 | 30.76 | |||
Ref. | [23] | [23] | [23] | [24] | [25-26] | [27] | [28] | This work |
Table 1 Lasing wavelength λem, emission cross-section σem and σemτ for the 3P0→3H6 transition of Pr3+ doped YAP and other crystals
Transitions | Parameters | LLF | YLF | GLF | LaF3 | BYF | LMA | ASL | YAP | SRA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Absorption | ||||||||||||
3H4→3P2 | labs/nm σabs /(×10-20, cm2) FWHMabs /nm | 444 10.3 1.70 | 444 9.0 1.80 | 444 7.8 1.9 | 442 1.6 5 | 445 3.7 - | 444 1.2 7.1 | 444 1.3 - | 449 5.64 5.6 | 445 1.14 9.59 | ||
Emission | ||||||||||||
3P1→3H5 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 522 3 ~2 113.7 | 522 3 ~2 107.1 | 522 3 1 130.8 | 537 0.7 ~3 35.7 | 522 0.4 ~4 17.9 | 530 0.25 4 8.6 | 542 2 - 76 | 533 8.8 1.9 168.6 | 525 1.35 9.8 41.5 | ||
3P0→3H6 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 607 12 ~3 454.8 | 607 14 ~3 499.8 | 607 13 - 566.8 | 610 2.9 ~6.9 147.9 | 607 24.7 1.2 1062.1 | 625 3.7 11 127.7 | 620 2.9 - 110.2 | 621 25.01 1.56 479.2 | 622 3.52 6.53 108.3 | ||
3P0→3F2 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 640 21 ~0.7 795.9 | 640 22 ~0.7 785.4 | 640 23 - 1003 | 635 1.2 ~1 61.2 | 639 12.1 0.6 520.3 | 647 2.3 6.6 79.4 | 643 8.5 - 323 | 662 4.71 1.28 90.2 | 644 10.37 5.07 319.0 | ||
3P0→3F4 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 720 7 ~1 265.3 | 720 9 ~1 321.3 | 720 16 - 697.6 | 720 6.6 ~3 336.6 | 721 7.3 1.3 309.6 | 728 3.3 8.5 113.9 | 725 11 - 418 | 747 10.37 1.54 198.7 | 725 5.75 4.35 176.9 | ||
τf/μs | 37.90 | 35.70 | 43.6 | 51 | 43 | 34.5 | 38 | 19.16 | 30.76 | |||
Ref. | [23] | [23] | [23] | [24] | [25-26] | [27] | [28] | This work |
Hosts | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Pump source | Year |
---|---|---|---|---|---|---|---|---|
YLF | 491 | σ | 3PJ→3H4 | 6 | 70 | 285 | 2w-OPSL | 2014[ |
523 | π | 3PJ→3H5 | 45 | ~4200 | >500 | 2×2w-OPSL | 2016[ | |
546 | π | 3PJ→3H5 | 60 | 2000 | 120 | 2w-OPSL | 2014[ | |
605 | σ | 3PJ→3H6 | 25 | 2100 | ~1500 | Blue-LD | 2017[ 2017[ | |
640 | σ | 3PJ→3F2 | 50 | 4800 | ~500 | Blue-LD | ||
698 | σ | 3PJ→3F3 | 36 | 1300 | 78 | InGaN-LD | 2016[ | |
721 | π | 3PJ→3F4 | 53 | 1000 | 16 | 2w-OPSL | 2014[ | |
LLF | 523 | E//c | 3P0→3H5 | 56 | 52.7 | 10 | 2-OPSL | 2007[ |
607 | E//c | 3P0→3H6 | 31 | 34.5 | 26 | 2-OPSL | 2007[ | |
640 | E//c | 3P0→3F2 | 56 | 52.7 | 39 | 2-OPSL | 2007[ | |
722 | E//c | 3P0→3F4 | 46 | 50 | 31 | 2-OPSL | 2007[ | |
BYF | 495 | E//X | 3PJ→3H4 | 27 | 201 | 163 | 2w-OPSL | 2014[ |
607 | E//Y | 3PJ→3H6 | 12.6 | 99 | 264 | Blue-LD | 2014[ | |
639 | E//Y | 3PJ→3F2 | 6.4 | 60 | 146 | Blue-LD | 2014[ | |
KYF | 554 | - | 3PJ→3H5 | 27 | 121 | 166 | InGaN-LD | 2013[ |
610 | - | 3PJ→3H6 | 18 | 97 | 162 | InGaN-LD | 2013[ | |
645 | - | 3PJ→3F2 | 38 | 268 | 30 | InGaN-LD | 2013[ | |
YGF | 523 | E//a | 3PJ→3H5 | 11 | 63 | 148 | InGaN-LD | 2015[ |
538 | E//b | 3PJ→3H5 | 24 | 140 | 135 | InGaN-LD | 2015[ | |
604 | E//a | 3PJ→3H6 | 13 | 105 | 72 | InGaN-LD | 2015[ | |
638 | E//a | 3PJ→3F2 | 16 | 128 | 188 | InGaN-LD | 2015[ | |
700 | E//a | 3PJ→3F4 | 18 | 78 | 47 | InGaN-LD | 2015[ | |
724 | E//b | 3PJ→3F4 | 20 | 117 | 48 | InGaN-LD | 2015[ | |
CaF2 | 642 | - | 3PJ→3F2 | 7.5 | 22 | 305 | InGaN-LD | 2017[ |
LaF3 | 537 | π | 3PJ→3H5 | 16 | 15 | 159 | InGaN-LD | 2012[ |
612 | π | 3PJ→3H6 | 15 | 20 | 98 | InGaN-LD | 2012[ | |
635 | c | 3PJ→3F2 | 16 | 23 | 95 | InGaN-LD | 2012[ | |
720 | π | 3PJ→3F4 | 37 | 80 | 10 | InGaN-LD | 2012[ | |
ASL | 620 | π | 3PJ→3H6 | 11 | 50 | ~510 | 2w-OPSL | 2018[ 2018[ 2018[ |
643 | π | 3PJ→3F2 | 27 | 160 | ~200 | 2w-OPSL | ||
725 | π | 3PJ→3F4 | 37 | 318 | ~280 | 2w-OPSL | ||
LMA | 620 | σ | 3PJ→3H6 | 2 | 2.9 | ~100 | 2w-OPSL | 2012[ |
648 | σ | 3PJ→3F2 | 4 | 10.1 | ~90 | 2w-OPSL | 2012[ | |
729 | σ | 3PJ→3F4 | 12 | 63.7 | ~25 | 2w-OPSL | 2012[ | |
YAP | 547 | E//c | 3PJ→3H5 | 6.1 | 37 | 320 | InGaN-LD | 2013[ |
662 | E//c | 3PJ→3F2 | 9 | 27.4 | 680 | GaN-LD | 2011[ | |
747 | E//b | 3PJ→3F4 | 45 | 490 | 300 | 2×InGaN-LD | 2014[ | |
SRA | 525 | - | 3PJ→3H5 | - | 36 | ~1000 | 2w-OPSL | 2013[ |
623 | σ | 3PJ→3H6 | 11 | 114 | ~200 | 4×InGaN-LD | 2014[ | |
644 | - | 3PJ→3F2 | 37 | 1065 | ~500 | 2w-OPSL | 2013[ | |
724 | σ | 3PJ→3F4 | 50 | 564 | 15.5 | 4×InGaN-LD | 2014[ |
Table 2 Visible laser output of Pr3+ doped crystals
Hosts | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Pump source | Year |
---|---|---|---|---|---|---|---|---|
YLF | 491 | σ | 3PJ→3H4 | 6 | 70 | 285 | 2w-OPSL | 2014[ |
523 | π | 3PJ→3H5 | 45 | ~4200 | >500 | 2×2w-OPSL | 2016[ | |
546 | π | 3PJ→3H5 | 60 | 2000 | 120 | 2w-OPSL | 2014[ | |
605 | σ | 3PJ→3H6 | 25 | 2100 | ~1500 | Blue-LD | 2017[ 2017[ | |
640 | σ | 3PJ→3F2 | 50 | 4800 | ~500 | Blue-LD | ||
698 | σ | 3PJ→3F3 | 36 | 1300 | 78 | InGaN-LD | 2016[ | |
721 | π | 3PJ→3F4 | 53 | 1000 | 16 | 2w-OPSL | 2014[ | |
LLF | 523 | E//c | 3P0→3H5 | 56 | 52.7 | 10 | 2-OPSL | 2007[ |
607 | E//c | 3P0→3H6 | 31 | 34.5 | 26 | 2-OPSL | 2007[ | |
640 | E//c | 3P0→3F2 | 56 | 52.7 | 39 | 2-OPSL | 2007[ | |
722 | E//c | 3P0→3F4 | 46 | 50 | 31 | 2-OPSL | 2007[ | |
BYF | 495 | E//X | 3PJ→3H4 | 27 | 201 | 163 | 2w-OPSL | 2014[ |
607 | E//Y | 3PJ→3H6 | 12.6 | 99 | 264 | Blue-LD | 2014[ | |
639 | E//Y | 3PJ→3F2 | 6.4 | 60 | 146 | Blue-LD | 2014[ | |
KYF | 554 | - | 3PJ→3H5 | 27 | 121 | 166 | InGaN-LD | 2013[ |
610 | - | 3PJ→3H6 | 18 | 97 | 162 | InGaN-LD | 2013[ | |
645 | - | 3PJ→3F2 | 38 | 268 | 30 | InGaN-LD | 2013[ | |
YGF | 523 | E//a | 3PJ→3H5 | 11 | 63 | 148 | InGaN-LD | 2015[ |
538 | E//b | 3PJ→3H5 | 24 | 140 | 135 | InGaN-LD | 2015[ | |
604 | E//a | 3PJ→3H6 | 13 | 105 | 72 | InGaN-LD | 2015[ | |
638 | E//a | 3PJ→3F2 | 16 | 128 | 188 | InGaN-LD | 2015[ | |
700 | E//a | 3PJ→3F4 | 18 | 78 | 47 | InGaN-LD | 2015[ | |
724 | E//b | 3PJ→3F4 | 20 | 117 | 48 | InGaN-LD | 2015[ | |
CaF2 | 642 | - | 3PJ→3F2 | 7.5 | 22 | 305 | InGaN-LD | 2017[ |
LaF3 | 537 | π | 3PJ→3H5 | 16 | 15 | 159 | InGaN-LD | 2012[ |
612 | π | 3PJ→3H6 | 15 | 20 | 98 | InGaN-LD | 2012[ | |
635 | c | 3PJ→3F2 | 16 | 23 | 95 | InGaN-LD | 2012[ | |
720 | π | 3PJ→3F4 | 37 | 80 | 10 | InGaN-LD | 2012[ | |
ASL | 620 | π | 3PJ→3H6 | 11 | 50 | ~510 | 2w-OPSL | 2018[ 2018[ 2018[ |
643 | π | 3PJ→3F2 | 27 | 160 | ~200 | 2w-OPSL | ||
725 | π | 3PJ→3F4 | 37 | 318 | ~280 | 2w-OPSL | ||
LMA | 620 | σ | 3PJ→3H6 | 2 | 2.9 | ~100 | 2w-OPSL | 2012[ |
648 | σ | 3PJ→3F2 | 4 | 10.1 | ~90 | 2w-OPSL | 2012[ | |
729 | σ | 3PJ→3F4 | 12 | 63.7 | ~25 | 2w-OPSL | 2012[ | |
YAP | 547 | E//c | 3PJ→3H5 | 6.1 | 37 | 320 | InGaN-LD | 2013[ |
662 | E//c | 3PJ→3F2 | 9 | 27.4 | 680 | GaN-LD | 2011[ | |
747 | E//b | 3PJ→3F4 | 45 | 490 | 300 | 2×InGaN-LD | 2014[ | |
SRA | 525 | - | 3PJ→3H5 | - | 36 | ~1000 | 2w-OPSL | 2013[ |
623 | σ | 3PJ→3H6 | 11 | 114 | ~200 | 4×InGaN-LD | 2014[ | |
644 | - | 3PJ→3F2 | 37 | 1065 | ~500 | 2w-OPSL | 2013[ | |
724 | σ | 3PJ→3F4 | 50 | 564 | 15.5 | 4×InGaN-LD | 2014[ |
Hosts | σabs/(×10-21, cm2) | β/% | σem/(×10-20, cm2) | τf/μs | Ref. |
---|---|---|---|---|---|
YAG | 1.6 | 50.96 | 1.50 | 376 | [64] |
YAl(BO3)4 | - | 65.90 | 1.90 | 520 | [65] |
LiLuF4 | - | 65.40 | 1.02 | 582 | [66] |
Lu2SiO4 | - | 61.0 | 0.74 | 509 | [67] |
KY3F10 | - | 59.8 | 0.83 | 440 | [66] |
Li2Gd4(MoO4)7 | σ: 2.5 π: 4.4 | σ:72.0 π: 71.9 | σ: 1.45 π: 1.34 | 139 | [68] |
YAP | a:0.743 b:0.690 c:0.870 | a:88.5 b:88.7 c:87.8 | a:0.298 b:0.450 c:0.452 | 185 | This work |
Table 3 Spectroscopic parameters of Dy3+ doped YAP and other crystals
Hosts | σabs/(×10-21, cm2) | β/% | σem/(×10-20, cm2) | τf/μs | Ref. |
---|---|---|---|---|---|
YAG | 1.6 | 50.96 | 1.50 | 376 | [64] |
YAl(BO3)4 | - | 65.90 | 1.90 | 520 | [65] |
LiLuF4 | - | 65.40 | 1.02 | 582 | [66] |
Lu2SiO4 | - | 61.0 | 0.74 | 509 | [67] |
KY3F10 | - | 59.8 | 0.83 | 440 | [66] |
Li2Gd4(MoO4)7 | σ: 2.5 π: 4.4 | σ:72.0 π: 71.9 | σ: 1.45 π: 1.34 | 139 | [68] |
YAP | a:0.743 b:0.690 c:0.870 | a:88.5 b:88.7 c:87.8 | a:0.298 b:0.450 c:0.452 | 185 | This work |
Crystals | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Type | Year |
---|---|---|---|---|---|---|---|---|
Dy,Tb : LLF | 574 | σ | 4F9/2→6H13/2 | 13 | 55 | 320 | CW | 2014[ |
Dy,Eu : YLF | 574 | σ | 4F9/2→6H13/2 | 10 | 47 | 244 | CW | 2016[ 2016[ 2016[ |
Dy : LLF | 578 | σ | 4F9/2→6H13/2 | 4 | 17 | 188 | Self-pulsed | |
661 | π | 4F9/2→6H11/2 | 2 | 4 | 143 | Self-pulsed | ||
Dy : YAG | 583 | - | 4F9/2→6H13/2 | 12 | 150 | - | Self-pulsed | 2012[ |
Dy : ZnWO4 | 575 | E//b | 4F9/2→6H13/2 | 13 | 110 | 550 | CW | 2017[ |
Table 4 Laser output of Dy3+ doped some common laser crystal
Crystals | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Type | Year |
---|---|---|---|---|---|---|---|---|
Dy,Tb : LLF | 574 | σ | 4F9/2→6H13/2 | 13 | 55 | 320 | CW | 2014[ |
Dy,Eu : YLF | 574 | σ | 4F9/2→6H13/2 | 10 | 47 | 244 | CW | 2016[ 2016[ 2016[ |
Dy : LLF | 578 | σ | 4F9/2→6H13/2 | 4 | 17 | 188 | Self-pulsed | |
661 | π | 4F9/2→6H11/2 | 2 | 4 | 143 | Self-pulsed | ||
Dy : YAG | 583 | - | 4F9/2→6H13/2 | 12 | 150 | - | Self-pulsed | 2012[ |
Dy : ZnWO4 | 575 | E//b | 4F9/2→6H13/2 | 13 | 110 | 550 | CW | 2017[ |
Host | labs/nm | σabs/(×10-22, cm2) | lem/nm | σem/(×10-22, cm2) | τf/ms | Ref. | |
---|---|---|---|---|---|---|---|
LLF | 488.8 | 3.0 | 585 | ~11 | 4.8 | [76] | |
TPP | 485 | 1.3 | 587 | 1.0 | 3.4 | [75] | |
TLP | 487 | 2.2 | 588 | 1.0 | 3.7 | [75] | |
TAB | 483 | 3.6 | 592 | 1.0 | 0.8 | [75] | |
PZABP | - | - | 582 | 0.7 | 0.42 | [77] | |
LBTAF | - | - | 585 | 0.58 | 1.27 | [78] | |
YAP | E//a | 486 | 3.3 | 590 | 1.72 | 1.72 | This work |
E//b | 484 | 5.2 | 591 | 2.73 | |||
E//c | 484 | 4.1 | 588 | 2.65 |
Table 5 Spectroscopic parameters of Tb3+ doped YAP and other crystals
Host | labs/nm | σabs/(×10-22, cm2) | lem/nm | σem/(×10-22, cm2) | τf/ms | Ref. | |
---|---|---|---|---|---|---|---|
LLF | 488.8 | 3.0 | 585 | ~11 | 4.8 | [76] | |
TPP | 485 | 1.3 | 587 | 1.0 | 3.4 | [75] | |
TLP | 487 | 2.2 | 588 | 1.0 | 3.7 | [75] | |
TAB | 483 | 3.6 | 592 | 1.0 | 0.8 | [75] | |
PZABP | - | - | 582 | 0.7 | 0.42 | [77] | |
LBTAF | - | - | 585 | 0.58 | 1.27 | [78] | |
YAP | E//a | 486 | 3.3 | 590 | 1.72 | 1.72 | This work |
E//b | 484 | 5.2 | 591 | 2.73 | |||
E//c | 484 | 4.1 | 588 | 2.65 |
Crystals | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Pump source | Year |
---|---|---|---|---|---|---|---|---|
Tb : YLF | 542 | σ | 5D4→7F5 | 55 | 158 | 8 | 2w-OPSL | 2016[ |
587 | π | 5D4→7F4 | 22 | 71 | 32 | 2w-OPSL | ||
Tb : LLF | 542 | σ | 5D4→7F5 | 52 | 1130 | 32 | 2w-OPSL | |
587 | π | 5D4→7F4 | 14 | 82 | 107 | 2w-OPSL | ||
Tb : KYF | 545 | σ | 5D4→7F5 | 34 | 793 | 25 | 2w-OPSL | |
584 | π | 5D4→7F4 | 5 | 18 | 38 | 2w-OPSL | ||
Tb : BLuF | 546 | σ | 5D4→7F5 | 46 | 270 | 18 | 2w-OPSL | |
Tb : CaF2 | 541 | - | 5D4→7F5 | 48 | 103 | ~34 | 2w-OPSL | 2017[ |
Table 6 Laser output of Tb3+ doped some common laser crystal
Crystals | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Pump source | Year |
---|---|---|---|---|---|---|---|---|
Tb : YLF | 542 | σ | 5D4→7F5 | 55 | 158 | 8 | 2w-OPSL | 2016[ |
587 | π | 5D4→7F4 | 22 | 71 | 32 | 2w-OPSL | ||
Tb : LLF | 542 | σ | 5D4→7F5 | 52 | 1130 | 32 | 2w-OPSL | |
587 | π | 5D4→7F4 | 14 | 82 | 107 | 2w-OPSL | ||
Tb : KYF | 545 | σ | 5D4→7F5 | 34 | 793 | 25 | 2w-OPSL | |
584 | π | 5D4→7F4 | 5 | 18 | 38 | 2w-OPSL | ||
Tb : BLuF | 546 | σ | 5D4→7F5 | 46 | 270 | 18 | 2w-OPSL | |
Tb : CaF2 | 541 | - | 5D4→7F5 | 48 | 103 | ~34 | 2w-OPSL | 2017[ |
Sample | labs/nm | σabs/(×10-20, cm2) | FWHMabs /nm | lem/nm | σem/(×10-21, cm2) | FWHMem/nm | τf/ms | Ref. |
---|---|---|---|---|---|---|---|---|
Sm : SrAl12O19 | 400(σ) | 8.5(σ) | - | 593(σ) | 1.2(σ) | - | 3.4 | [88] |
Sm : LiLuF4 | 401(σ) | 1.04(σ) | 2.3(σ) | 606(π) | 1.3(π) | 7.5(σ) | 4.8 | [87-88] |
401(π) | 1.51(π) | 3.1(π) | 9.5(π) | |||||
Sm : LiYF4 | 401(σ) | 0.72(σ) | 3(σ) | 597(σ) | 0.679(σ) | 7.5(σ) | 4.8 | [86] |
401(π) | 1.37(π) | 2(π) | 605(π) | 1.039(π) | 9.5(π) | |||
Sm : YAP | 409(E//a) | 0.25(E//a) | 8.4(E//a) | 604(E//a) | 0.47(E//a) | 6.29(E//a) | 0.59 | This work |
409(E//b) | 0.67(E//b) | 10.2(E//b) | 604(E//b) | 1.01(E//b) | 6.32(E//b) | |||
409(E//c) | 0.86(E//c) | 9.4(E//c) | 610(E//c) | 0.96(E//c) | 3.26(E//c) |
Table 7 Spectroscopic parameters of Sm3+ doped YAP and other crystals
Sample | labs/nm | σabs/(×10-20, cm2) | FWHMabs /nm | lem/nm | σem/(×10-21, cm2) | FWHMem/nm | τf/ms | Ref. |
---|---|---|---|---|---|---|---|---|
Sm : SrAl12O19 | 400(σ) | 8.5(σ) | - | 593(σ) | 1.2(σ) | - | 3.4 | [88] |
Sm : LiLuF4 | 401(σ) | 1.04(σ) | 2.3(σ) | 606(π) | 1.3(π) | 7.5(σ) | 4.8 | [87-88] |
401(π) | 1.51(π) | 3.1(π) | 9.5(π) | |||||
Sm : LiYF4 | 401(σ) | 0.72(σ) | 3(σ) | 597(σ) | 0.679(σ) | 7.5(σ) | 4.8 | [86] |
401(π) | 1.37(π) | 2(π) | 605(π) | 1.039(π) | 9.5(π) | |||
Sm : YAP | 409(E//a) | 0.25(E//a) | 8.4(E//a) | 604(E//a) | 0.47(E//a) | 6.29(E//a) | 0.59 | This work |
409(E//b) | 0.67(E//b) | 10.2(E//b) | 604(E//b) | 1.01(E//b) | 6.32(E//b) | |||
409(E//c) | 0.86(E//c) | 9.4(E//c) | 610(E//c) | 0.96(E//c) | 3.26(E//c) |
[1] | 徐军 . 激光材料科学与技术前沿. 上海: 上海交通大学出版社, 2007. |
[2] | 徐军 . 稀土激光晶体材料及其应用. 北京: 科学出版社, 2016. |
[3] | 徐军 . 新型激光晶体材料及其应用. 北京: 科学出版社, 2016. |
[4] |
ZHAO LING, YAO YI, ZHAO YANG , et al. All-solid-state dual end pumped YVO4:Nd/LBO blue laser with 21.8 W output power at 457 nm. Opt. Spectrosc., 2014,116(3):470-472.
DOI URL |
[5] |
KANTOLA EMMI, LEINONEN TOMI, RANTA SANNA , et al. High-efficiency 20 W yellow VECSEL. Opt. Express, 2014,22(6):6372-6380.
DOI URL PMID |
[6] |
YU HAO-HAI, ZONG NAN, PAN ZHONG-BEN , et al. Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm. Opt. Lett., 2011,36(19):3852-3854.
DOI URL PMID |
[7] |
FANG QIAN-NAN, LU DA-ZHI, YU HAO-HAI , et al. Self- frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm. Opt. Lett., 2016,41(5):1002-1005.
DOI URL PMID |
[8] |
PASCHOTTA RUDIGE, MOORE NICK, CLARKSON W, ANDRE W . et al. 230 mW of blue light from a thulium-doped upconversion fiber laser. IEEE.[J]. Sele. Top. Quant., 1997,3(4):1100-1102.
DOI URL |
[9] |
SANDROCK T, SCHEIFE H, HEUMANN E , et al. High-power continuous-wave upconversion fiber laser at room temperature. Opt. Lett., 1997,22(11):808-810.
DOI URL PMID |
[10] |
ROTH PRTER W, MACLEAN ALEXANDER J, BURNS DAVID , et al. Directly diode-laser-pumped Ti:sapphire laser. Opt. Lett., 2009,34(21):3334-3336.
DOI URL PMID |
[11] |
GÜREL K, WITTWER V J, HOFFMANN M , et al. Green-diode- pumped femtosecond Ti: sapphire laser with up to 450 mW average power. Opt. Express, 2015,23(23):30043-30048.
DOI URL PMID |
[12] |
NAKAMURA SHUJI, SENOH MASAYUKI, NAGAHAMA SHIN-ICHI , et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn.[J]. Appl. Phys., 1996,35(1B):74-76.
DOI URL |
[13] |
KUZNETSOV M, HAKIMI F, SPRAGUE R , et al. High-power(>0.5-W CW) diode-pumped vertical-external-cavity surface- emitting semiconductor lasers with circular TEM00 beams. IEEE Photonics Tech., 1997,9(8):1063-1065.
DOI URL |
[14] |
MCINERNEY J G, MOORADIAN A, LEWIS A , et al. High- power surface emitting semiconductor laser with extended vertical compound cavity. Electron. Lett., 2003,39(6):523-525.
DOI URL |
[15] |
REICHERT FABIAN, MARZAHL DANIEL-TIMO, METZ PHILIP-WERNER , et al. Efficient laser operation of diode- pumped Pr 3+,Mg 2+:SrAl12O19 . Appl. Phys.B, 2014,116(1):109-113.
DOI URL |
[16] | MALINOWSKI M, JOUBERT M F, MAHIOU R , et al. Visible laser emission of Pr 3+ in various hosts . J. Phys.IV, 1994,4(C4):541-544. |
[17] |
KRÄNKEL CHRISTIAN, MARZAHL DANIEL-TIMMO, MOGLIA FRANCESCA , et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser. Photon. Rev., 2016,10(4):548-568.
DOI URL |
[18] |
LIU BIN, SHI JIAO-JIAO, WANG QING-GUO , et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3.[J]. Lumin., 2018,196:76-80.
DOI URL |
[19] |
REICHERT FABINA, MARAZAHL DANIEL-TIMO, HUBER- GUNTER . Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19. J. Opt. Soc. Am.B, 2014,31(2):349-354.
DOI URL |
[20] |
FECHNER M, REICHERT F, HANSEN NO , et al. Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19. Appl. Phys. B, 2011,102(4):731-735.
DOI URL |
[21] |
DANGER T, BLECKMANN A, HUBER G . Stimulated emission and laser action of Pr 3+-doped YAlO3. Appl. Phys. B, 1994,58(5):413-420.
DOI URL |
[22] |
WANG YAN, LI JIAN-FU, YOU ZHEN-YU , et al. Spectroscopic properties of Pr 3+:Gd3Ga5O12 crystal. [J]. Alloy. Compd., 2010,502(1):184-189.
DOI URL |
[23] |
CORNACCHIA F, LIETO A-DI, TONELLI M , et al. Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals. Opt. Express, 2008,16(20):15932-15941.
DOI URL PMID |
[24] |
RECHICHERT F, MOGLIA F, MARZAHL D T , et al. Diode pumped laser operation and spectroscopy of Pr 3+: LaF3. Opt.Express, 2012,20(18):20387-20395.
DOI URL PMID |
[25] |
KHIARI S, VELAZQUEZ M, MONCORGE R , et al. Red-luminescence analysis of Pr 3+ doped fluoride crystals. [J]. Alloy. Compd., 2008,451:128-131.
DOI URL |
[26] |
HAKIM R, DAMAK K, TONCELLI A , et al. Growth, optical spectroscopy and Judd-Ofelt analysis of Pr-doped BaY2F8 monocrystals.[J]. Lumin., 2014,143:233-240.
DOI URL |
[27] | MARZAHL DANIEL-TIMO, REICHERT FABIN, FECHNER MATHIES , et al. Laser Operation and Spectroscopy of Pr 3+: LaMgAl11O19. 5th Eps-Qeod Europhoton Conference, 2012. |
[28] | SATTAYAPORN S, LOISEAU P, AKA G , et al. Crystal growth, spectroscopy and laser performances of Pr 3+:Sr0.7La0.3Mg0.3Al11.7O19 (Pr:ASL). Opt.Express, 2008,26(2):1278-1289. |
[29] |
HOMMERICH U, BROWN E, AMEDZAKE P , et al. Mid-infrared (4.6 μm) emission properties of Pr3+ doped KPb2Br5. J. Appl. Phys., 2006,100:113507.
DOI URL |
[30] |
SOJKA L, TANG A, FURNISS D . et al. Broadband, mid-infrared emission from Pr 3+ doped GeAsGaSe chalcogenide fiber, optically clad . Opt. Mater., 2014,36:1076-1082.
DOI URL |
[31] |
WALSH BRIAN-M, HOMMERICH UWE, YOSHIKAWA AKIRA , et al. Mid-infrared spectroscopy of Pr-doped materials.[J]. Lumin., 2018,197:349-353.
DOI URL |
[32] |
ZANDI BAHRAM, MERKEL LARRY-D, GRUBER JOHN-B , et al. Optical spectra and analysis for Pr 3+in SrAl12O19. [J]. Appl. Phys., 1997,81(3):1047-1054.
DOI URL |
[33] |
MOOS H-WARREN . Spectroscopic relaxation processes of rare earth ions in crystals.[J]. Lumin., 1970,1(2):106-121.
DOI URL |
[34] |
DORENBOS P . 5d-level energies of Ce 3+ and the crystalline environment. I. Fluoride compounds. Phys. Rev. B, 2000,62(23):15640-15649.
DOI URL |
[35] | LAROCHE M, BRAUD ALAIN, GIAR D , et al. Spectroscopic investigations of the 4f5d energy levels of Pr 3+ in fluoride crystals by excited-state absorption and two-step excitation measurements. J. Opt. Soc. Am. B, 1999,16(12):2269-2277. |
[36] |
LAROCHE MATHIEU, DOUALAN JEAN-LOUIS, GIRARD SYLVAIN , et al. Experimental and theoretical investigations of the 4f 2\4f5d ground-state and excited-state absorption spectra of Pr 3+ in LiYF4. J. Opt. Soc. Am.B, 2000,17(7):1291-1303.
DOI URL |
[37] | LAYNE C B, LOWDERMILK W H, WECER M J . Multiyhonon relaxation of rare-earth ions in oxide glasses. Phys. Rev., 1977,16(1):11-20 |
[38] |
SCHUURAMANS M F H, VAN DIJK J M F . On radiative and non-radiative decay times in the weak coupling limit. Phy.B, 1984,123(2):131-155.
DOI URL |
[39] |
NIKL MATIN, YOSHIKAWA AKIRA . Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Optical Mater., 2015,3(4):463-481.
DOI URL |
[40] |
CHEUNG Y M, GAYEN S K . Excited-state absorption in Pr 3+:Y3Al5O12. Phys. Rev.B, 1994,49(21):14827-14835.
DOI URL |
[41] |
SOLOMON R, MUELLER L . Stimulated emission at 598.5 nm from Pr 3+ in LaF3 . Appl. Phys. Lett., 1963,3(8):135-137.
DOI URL |
[42] | SANDROCK T, DANGER T, HEUMANN E , et al. Efficient continuous wave-laser emission of Pr 3+-doped fluorides at room temperature. Appl. Phys.B, 1994,58(2):149-151 |
[43] |
SANDROCK T, HEUMANN E, HUBER G , et al. Continuous- wave Pr,Yb:LiYF4 Upconversion Laser in the Red Spectral Range at Room Temperature. Advanced Solid State Lasers,Optical Society of America, 1996.
DOI URL |
[44] |
METZ P-W, HASSE K, PARISI D , et al. Continuous-wave Pr 3+:BaY2F8 and Pr 3+:LiYF4 lasers in the cyan-blue spectral region . Opt. Lett., 2014,39(17):5158-5161.
DOI URL |
[45] |
METZ PHILIP-WERNER, REICHERT FABIAN, MOGLIA FRANCESCA , et al. High-power red, orange, and green Pr 3+:LiYF4 lasers . Opt. Lett., 2014,39(11):3193-3196.
DOI URL PMID |
[46] | TANAKA HIROKI, KANNARI FUMIHIKO . Power Scaling of Continuous-wave Visible Pr 3+:YLF Laser End-pumped by High Power Blue Laser Diodes . OSA Laser Congress, 2017. |
[47] |
LUO SAI-YU, YAN XI-GUN, CUI QIN , et al. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Opt. Commun., 2016,380:357-360.
DOI URL |
[48] |
CORNACCHIA F, RICHTER A, HEUMANN E , et al. Visible laser emission of solid state pumped LiLuF4:Pr 3+. Opt . Express, 2007,15:992-1002.
DOI URL |
[49] |
SOTTILE ALBERTO, PARISI DANIELA, TONELLI MAURO . Multiple polarization orange and red laser emissions with Pr:BaY2F8. Opt. Express, 2014,22(11):13784-13791.
DOI URL PMID |
[50] |
METZ PHILIP W, MULLER SEBASTIAN, REICHERT FABIAN , et al. Wide wavelength tunability and green laser operation of diode-pumped Pr 3+:KY3F10. Opt. Express, 2013,21(25):31274-31281.
DOI URL PMID |
[51] |
YU HAO, JIANG DA-PENG, TANG FEI , et al. Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd 3+ ions . Mater. Lett., 2017,206:140-142.
DOI URL |
[52] |
SATTAYAPORN S, LOISEAU P, AKA G , et al. Crystal growth, spectroscopy and laser performances of Pr 3+:Sr0.7La0.3Mg0.3Al11.7O19 (Pr:ASL) . Opt.Express, 2018,26(2):1278-1289.
DOI URL |
[53] |
FIBRICH MARTIN, SULC JAN, JELINKOVA HELENA . Pr:YAlO3 laser generation in the green spectral range. Opt. Lett., 2013,38(23):5024-5027.
DOI URL PMID |
[54] |
FIBRICH, JELINKOVA H, SULC J , et al. Pr:YAlO3 microchip laser at 662 nm. Laser Phys. Lett., 2011,8(2):116-119.
DOI URL |
[55] | FIBRICH M, SULC J, JELIN KOVA . 1Power-scaling of a Pr:YAlO3 microchip laser operating at 747 nm wavelength at room temperature. Laser Phys. Lett., 2014, 1(10): 105802-1-4. |
[56] |
REICHERT F, CALMANOT, MULLER S , et al. Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides. Opt. Lett., 2013,38(15):2698-2701.
DOI URL PMID |
[57] | REICHERT F, CALMANO T, MÜLLER S , et al. Visible Laser Operation of Pr,Mg:SrAl12O19 Waveguides. The European Conference on Lasers and Electro-Optics, 2013. |
[58] |
KRANKEL CHRISTIAN . Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range. IEEE Journal of Selected Topics in Quantum Electronics, 2015,21(1):250-262.
DOI URL |
[59] |
DIALLO P T, BOUTIAUD P, MAHIOU R , et al. Red luminescence in Pr 3+-doped calcium titanates . Phys. Status Solidi., 1997,160(1):255-263.
DOI URL |
[60] |
LIU BIN, SHI JIAO-JIAO, WANG QING-GUO , et al. Crystal growth and yellow emission of Dy:YAlO3. Opt. Mater., 2017,72:208-213.
DOI URL |
[61] |
NING KAI-JIE, HE XIAO-MING, ZHANG LIAN-HAN , et al. Spectroscopic characteristics of GdVO4:Dy 3+ crystal . Opt. Mater., 2014,37:745-749.
DOI URL |
[62] |
YANG FU-GUI, TU CHAO-YANG, WANG HONG-YAN , et al. Growth and spectroscopy of Dy 3+ doped in ZnWO4 crystal . Opt. Mater., 2007,29(12):1861-1865.
DOI URL |
[63] |
LUPEI A, LUPEI V, GHEORGHE C , et al. Spectroscopic characteristics of Dy 3+ doped Y3Al5O12 transparent ceramics. J. Appl. Phys., 2011, 110(8): 083120-1-9.
DOI URL |
[64] |
BOWMAN R, O’CONNOR S, CONDON N J . Diode pumped yellow dysprosium lasers. Opt.Express, 2012,20(12):12906-1 2911.
DOI URL PMID |
[65] |
RYBA-ROMANOWSKI W, DOMINIAK-DZIK G, SOLARZ P , et al. Transition intensities and excited state relaxation dynamics of Dy 3+ in crystals and glasses: a comparative study . Opt. Mater., 2009,31(11):1547-1554.
DOI URL |
[66] |
BIGOTTA STEFANO, TONELLI M, CAVALLI E , et al. Optical spectra of Dy 3+ in KY3F10 and LiLuF4 crystalline fibers. [J]. Lumin., 2010,130(1):13-17.
DOI URL |
[67] |
DOMINIAK-DZIK G, RYBA-ROMANOWSKI W, LISIECKI R , et al. Dy-doped Lu2SiO5 single crystal: spectroscopic characteristics and luminescence dynamics. Appl.Phys.B, 2009,99(1/2):285-297.
DOI URL |
[68] |
ZHOU WEI-WEI, WEI BO, ZHAO WANG , et al. Intense yellow emission in Dy 3+-doped LiGd(MoO4)2 crystal for visible lasers. Opt. Mater., 2011,34(1):56-60.
DOI URL |
[69] | MALINOWSKI M, MYZIAK P, PIRAMIDOWICZ R , et al. Spectroscopic and laser properties of LiNbO3:Dy 3+ crystals. Acta Phys. Pol.A, 1996,1(90):181-189. |
[70] | LIMPERT J, ZELLMER H, RIEDEL P , et al. Laser Oscillation in Yellow and Blue Spectral Range in Dy 3+:ZBLAN. Lasers and Electro-Optics, 2001. CLEO'01 . Technical Digest, 2001: 353-354. |
[71] |
XIA ZHONG-CHAO, YANG FU-GUI, QIAO LIANG , et al. End pumped yellow laser performance of Dy 3+:ZnWO4 . Opt. Commun., 2017,387:357-360.
DOI URL |
[72] |
BOLOGNESI GIACOMO, PARIS DANIELA, CALONICO DAVIDE , et al. Yellow laser performance of Dy 3+ in co-doped Dy,Tb:LiLuF4 . Opt. Lett., 2014,39(23):6628-6631.
DOI URL |
[73] |
LOIKO PAVEL, MATEOS XAVIER, DUNINA ELENA , et al. Judd-Ofelt modelling and stimulated-emission cross-sections for Tb 3+ ions in monoclinic KYb(WO4)2 crystal. J. Lumin., 2017,190:37-44.
DOI URL |
[74] |
LIU BIN, SHI JIAO-JIAO, WANG QING-GUO , et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Tb:YAlO3. Spectrochim. Acta.A, 2018,200:58-62.
DOI URL |
[75] |
COLAK S, ZWICKER W K . Transition rates of Tb 3+ in TbP5O14, TbLiP4O12, and TbAl3 (BO3)4: an evaluation for laser applications. J. Appl. Phys., 1983,54(5):2156-2166.
DOI URL |
[76] | METZ P W, MARZAHL D T, MAJID A , et al. High Power Continuous Wave Visible Tb 3+:LiLuF4 Laser . Advanced Solid State Lasers Conference, 2015: ATu1A. 1. |
[77] |
KESAVULU C R, IDAALME SILVA ANIELLE-CHRISTINE, DOUSTI M-R , et al. Concentration effect on the spectroscopic behavior of Tb 3+ ions in zinc phosphate glasses. [J]. Lumin., 2015,165:77-84.
DOI URL |
[78] |
JAMALAIAH B C, SURESH KUMAR, MOHAN BABU A , et al. Study on spectroscopic and fluorescence properties of Tb 3+-doped LBTAF glasses. Physica B Condens.Matter, 2009,404(14/15):2020-2024.
DOI URL |
[79] | ANDREEV S I, BEDILOV M R, KARAPETYAN G O , et al. Stimulated radiation of glass activated by terbium. Sov.[J]. Opt. Tech., 1967,34:819. |
[80] | YAMASHITA TATSUYA, OHISHI YASUTAKE . Amplification and lasing characteristics of Tb 3+-doped fluoride fiber in the 0.54 µm band. Jpn. [J]. Appl. Phys., 2007,46(11):991-993. |
[81] | METZ P W, MARZAHL D T, MAJID A , et al. Efficient continuous wave laser operation of Tb 3+-doped fluoride crystals in the green and yellow spectral regions . Laser & Photonics Reviews, 2016,10(2):335-344. |
[82] |
PHILIP WERNER METZ, DANIEL-TIMO MARZAHL, GÜNTER HUBER , et al. Performance and wavelength tuning of green emitting terbium lasers. Opt.Express, 2017,17(25):5716-5724.
DOI URL PMID |
[83] | 刘斌 . 可见波段稀土离子掺杂激光晶体的生长和性能研究. 上海: 同济大学博士学位论文, 2018. |
[84] |
DOMINIAK-DZIK GRAZYNA . Sm 3+-doped LiNbO3 crystal, optical properties and emission cross-sections. [J]. Alloy. Compd., 2005,391(1/2):26-32.
DOI URL |
[85] |
PUGH-THOMAS D . Spectroscopic properties and Judd-Ofelt analysis of BaY2F8:Sm 3+. J. Opt. Soc. Am.B, 2014,31(8):1777-1785.
DOI URL |
[86] |
WANG G Q, LIN Y-F, GONG X H , et al. Polarized spectral properties of Sm 3+:LiYF4 crystal. [J]. Lumin., 2014,147:23-26.
DOI URL |
[87] |
WANG G Q, GONG X H, LIN Y F , et al. Polarized spectral properties of Sm 3+:LiLuF4 crystal for visible laser application . Opt. Mater., 2014,37:229-234.
DOI URL |
[88] |
MARZAHL D T, METZ P W, KRANKEL C , et al. Spectroscopy and laser operation of Sm 3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19). Opt.Express, 2015,23(16):21118-211127.
DOI URL |
[89] | KAZAKOV B N, ORLOV M S, PETROV M V , et al. Induced emission of Sm 3+ ions in the visible region of the spectrum. Opt.Spectros, 1979,47:676-677. |
[90] |
FARRIES M C, MORKEL P R, TOWNSEND J E . Samarium 3+-doped glass laser operating at 651 nm . Electron. Lett., 1988,24(11):709-711.
DOI URL |
[91] |
KOOPMANN P, LAMRINI S, SCHOLLE K , et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm. Opt.Express, 2013,21(3):3926-3931.
DOI URL PMID |
[92] |
WALSH B M, GREW G W, BARNES N P . Energy levels and intensity parameters of Ho 3+ ions in GdLiF4, YLiF4 and LuLiF4. [J]. Phys.-Condens. Mat., 2005,17(48):7643-7665.
DOI URL |
[93] |
NOSTRAND M C, PAGE R H, PAYNE S A , et al. Optical properties of Dy 3+-and Nd 3+-doped KPb2Cl5. J. Opt. Soc. Am.B, 2001,18(3):264-276.
DOI URL |
[94] | RADEMAKER K, KRUPKE W F, PAGE R H , et al. Optical properties of Nd 3+-and Tb 3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay. J. Opt. Soc. Am.B, 2004,21(12):2117-2129. |
[95] | VORONKO Y K, KAMINSKII A A, OSIKO V V , et al. Stimulated emission of Ho 3+ in CaF2 at lambda=551.2 nm . ZhETF Pisma Redaktsiiu, 1965,1:5. |
[96] |
CHICKLIS E, NAIMAN C, ESTEROWITZ L , et al. Deep red laser emission in Ho:YLF. IEEE[J]. Quantum Electron., 1977,13(11):893-895.
DOI URL |
[97] |
REICHERT F, MOGLA F, METZ P-W , et al. Prospects of holmium- doped fluorides as gain media for visible solid state lasers. Opt. Mater.Express, 2015,5(1):88-101.
DOI URL |
[98] |
FUNK DAVID-S, EDEN J-GARY . Laser diode-pumped holmium- doped fluorozirconate glass fiber laser in the green (λ-544-549 nm). IEEE[J]. Quantum Electron, 2001,37(8):980-992.
DOI URL |
[99] | GARBUZOV D, KUDRYASHOV I, DUBINSKII M. 110 W( 0.9 J ) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser. Appl. Phys. Letter, 2005, 87(12): 121101-1-4. |
[100] |
LI T, BEIL K, KRANKEL C , et al. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm. Opt. Letter., 2012,37(13):2568-2570.
DOI URL PMID |
[101] |
JENSEN T, DIENING A, HUBER G , et al. Investigation of diode- pumped 2.8-μm Er:LiYF4 lasers with various doping levels. Opt.Letter, 1996,21(8):585-587.
DOI URL |
[102] |
MOGLIA FRANCESCA, MULLER SEBASTIAN, REICHERT FABIAN , et al. Efficient upconversion-pumped continuous wave Er 3+:LiLuF4 lasers . Opt. Mater., 2015,42:167-173.
DOI URL |
[103] |
JOHNSON L F, GUGGENHEIM H J . Infrared-pumped visible laser. Appl. Phys.Letter, 1971,19(2):44-47.
DOI URL |
[104] |
DANGER T, KOETKE J, BREDE R , et al. Spectroscopy and green upconversion laser emission of Er 3+-doped crystals at room temperature. [J]. Appl. Phys., 1994,76(3):1413-1422.
DOI URL |
[105] |
DORENBOS P . The 4f n ↔ 4f n-15d transitions of the trivalent lanthanides in halogenides and chalcogenides. [J]. Lumin., 2000,91(1/2):91-106.
DOI URL |
[106] | TOMA O . Emission regimes of a green Er:YLiF4 Laser. IEEE[J]. Quantum Electron., 2007,43(7):519-526. |
[107] |
BREDE R, DANGER T, HEUMANN E , et al. Room-temperature green laser emission of Er:LiYF4. Appl. Phys. Lett., 1993,63(6):729-730.
DOI URL |
[108] | 孙家跃, 杜海燕, 胡文祥 . 固体发光材料. 北京: 化学工业出版社, 2003: 89. |
[109] |
DASHKEVICH V I, BAGAYEV S N, ORLOVICH V A , et al. Quasi-continuous wave and continuous wave laser operation of Eu:KGd(WO4)2crystal on a5D0→ 7F4 transition. Laser Phys. Lett., 2015, 12(1): 015006-1-7.
DOI URL |
[110] |
DEMESH MAXIM, YASUKEVICH ANATOL, KISEL VIKTOR , et al. Spectroscopic properties and continuous-wave deep-red laser operation of Eu 3+-doped LiYF4 . Opt. Lett., 2018,43(10):2364-2367.
DOI URL |
[111] | SHI JIAO-JIAO, LIU BIN, WANG QING-GUO , et al. Crystal growth and spectral properties of Tb:Lu2O3. Chin. Phys. B, 2018, 27(9): 097801-1-6. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||