Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (12): 1337-1344.DOI: 10.15541/jim20170125
• Orginal Article • Previous Articles
LIU Yong-Ying1,2, QIU Peng-Fei1, CHEN Hong-Yi1,2, CHEN Rui1,2, SHI Xun1, CHEN Li-Dong1
Received:
2017-03-20
Published:
2017-12-20
Online:
2017-11-21
Supported by:
CLC Number:
LIU Yong-Ying, QIU Peng-Fei, CHEN Hong-Yi, CHEN Rui, SHI Xun, CHEN Li-Dong. Measuring Ionic Conductivity in Mixed Electron-ionic Conductors Based on the Ion-blocking Method[J]. Journal of Inorganic Materials, 2017, 32(12): 1337-1344.
Fig. 2 (a) Sketch map of the ion motion process when a current is switched on and off. (b) A typical potential variation curve on a sample caused by the ion motion. (c) Process 1 is for current on and process 2 is for current off
Fig. 3 Variations of potential and temperature difference on a filled CoSb3 sample at 227℃ in (a) nearly thermal-insulating condition and (b) thermal-conducting condition under different current densities. Both the potential and temperature difference are measured between the two R-Type thermocouples pasted on the sample
Fig. 4 Variations of potential (a) and temperature difference (b) on a Cu1.94S sample at 477℃ in thermal-insulating condition and thermal-conducting condition
Fig. 5 (a) Potential variation curves for Cu1.99S under different test current densities at 477℃. (b) σi values calculated based on the potential variation curves shown in (a)The inset in (a) shows the optical image of the sample after the measurement under 0.512 A/cm2. Obvious Cu precipitation is observed on the sample’s surface
Sample | T/℃ | σiY/ (S∙m-1) | σi1/ (S∙m-1) | σi2/ (S∙m-1) | σiA/ (S∙m-1) |
---|---|---|---|---|---|
Cu1.99S | 177 | 58 | 57 | 58 | 58 |
227 | 97 | 98 | 96 | 97 | |
277 | 137 | 137 | 138 | 137 | |
327 | 178 | 179 | 175 | 177 | |
427 | 298 | 291 | 310 | 300 | |
452 | 309 | 305 | 314 | 309 | |
477 | 327 | 326 | 328 | 327 | |
502 | 349 | 351 | 347 | 349 | |
527 | 369 | 356 | 376 | 366 | |
Cu7PSe6 | 127 | 50 | 55 | 50 | 53 |
177 | 79 | 81 | 79 | 80 | |
227 | 118 | 117 | 118 | 118 | |
277 | 163 | 172 | 163 | 167 |
Table 1 Ionic conductivities for Cu1.99S and Cu7PSe6 calculated by using the Yokota’s method (σiY), the data of process 1 (σi1) and process 2 (σi2), and the average data of process 1 and process 2 (σiA)
Sample | T/℃ | σiY/ (S∙m-1) | σi1/ (S∙m-1) | σi2/ (S∙m-1) | σiA/ (S∙m-1) |
---|---|---|---|---|---|
Cu1.99S | 177 | 58 | 57 | 58 | 58 |
227 | 97 | 98 | 96 | 97 | |
277 | 137 | 137 | 138 | 137 | |
327 | 178 | 179 | 175 | 177 | |
427 | 298 | 291 | 310 | 300 | |
452 | 309 | 305 | 314 | 309 | |
477 | 327 | 326 | 328 | 327 | |
502 | 349 | 351 | 347 | 349 | |
527 | 369 | 356 | 376 | 366 | |
Cu7PSe6 | 127 | 50 | 55 | 50 | 53 |
177 | 79 | 81 | 79 | 80 | |
227 | 118 | 117 | 118 | 118 | |
277 | 163 | 172 | 163 | 167 |
[1] | CHEN L D, XIONG Z, BAI S Q.Recent progress of thermoelectric nano-composites.Journal of Inorganic Materials, 2010, 25(6): 561-568. |
[2] | ZHU T, HU L, ZHAO X,et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Advanced Science, 2016, 3(7): 1600004. |
[3] | SHI X, CHEN L, UHER C.Recent advances in high-performance bulk thermoelectric materials.International Materials Reviews, 2016, 61(6): 379-415. |
[4] | ZHAN B, LAN J L, LIU Y C,et al. Research progress of oxides thermoelectric materials.Journal of Inorganic Materials, 2014, 29(3): 237-244. |
[5] | SU X, WEI P, LI H,et al. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications.Advanced Materials, 2017, 29(20): 160213 |
[6] | LIU H, SHI X, XU F,et al. Copper ion liquid-like thermoelectrics.Nature Materials, 2012, 11(5): 422-425. |
[7] | HE Y, DAY T, ZHANG T,et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide.Advanced Materials, 2014, 26(23): 3974-3978. |
[8] | HE Y, LU P, SHI X,et al. Ultrahigh thermoelectric performance in mosaic crystals.Advanced Materials, 2015, 27(24): 3639-3644. |
[9] | HE Y, ZHANG T, SHI X,et al. High thermoelectric performance in copper telluride.NPG Asia Materials, 2015, 7(8): e210. |
[10] | QIU P F, WANG X B, ZHANG T S,et al. Thermoelectric properties of Te-doped ternary CuAgSe compounds.Journal of Materials Chemistry A, 2015, 3(44): 22454-22461. |
[11] | HONG A J, LI L, ZHU H X,et al. Anomalous transport and thermoelectric performances of CuAgSe compounds.Solid State Ionics, 2014, 261: 21-25. |
[12] | QIU P F, ZHANG T S, QIU Y T,et al. Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity.Energy Environmental Science, 2014, 7(12): 4000-4006. |
[13] | BHATTACHARYA S, BASU R, BHATT R,et al. CuCrSe2: a high performance phonon glass and electron crystal thermoelectric material. Journal of Materials Chemistry A, 2013, 1(37): 11289-11294. |
[14] | PEDERSEN B L, Birkedal H, NYGREN M,et al. The effect on Mg doping on the thermelectric performance of Zn4Sb3. Journal of Applied Physics, 2009, 105: 013517. |
[15] | WELDERT K S, ZEIER W G, DAY T W,et al. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. Journal of the American Chemical Society, 2014, 136(34): 12035-12040. |
[16] | JIANG B B, QIU P F, EIKELAND E,et al. Cu8GeSe6-based thermoelectric materials with an argyrodite structure. Journal of Materials Chemistry C, 2017, 5: 943-952. |
[17] | SHI X, CHEN L.Thermoelectric materials step up.Nature Materials, 2016, 15(7): 691-692. |
[18] | HUANG X Y, XU Z, CHEN L D.New thermoelectric materials with half-heusler structure.Journal of Inorganic Materials, 2004, 19(1): 25-30. |
[19] | LI J, LIU W, ZHAO L.High-performance nanostructured thermoelectric materials.NPG Asia Materials, 2010, 2(4): 152-158. |
[20] | DENNLER G, CHMIELOWSKI R, JACOB S,et al. Are binary copper sulfides/selenides really new and promising thermoelectric materials.Advanced Energy Materials, 2014, 4(9): 1301581. |
[21] | QIU P F, SHI X, CHEN L D.Cu-based thermoelectric materials.Energy Storage Materials, 2016, 3: 85-97. |
[22] | BROWN D R, DAY T, CAILLAT T,et al. Chemical stability of (Ag,Cu)2Se: a historical overview. Journal of Electronic Materials, 2013, 42(7): 2014-2019. |
[23] | SATO H, KIKUCHI R.Cation diffusion and conductivity in solid electrolytes. I.The Journal of Chemical Physics, 1971, 55(2): 677-702. |
[24] | ZHANG S S, XU K, JOW T R.Electrochemical impedance study on the low temperature of Li-ion batteries.Electrochimica Acta, 2004, 49(7): 1057-1061. |
[25] | ZHANG S S, XU K, JOW T R.EIS study on the formation of solid electrolyte interface in Li-ion battery.Electrochimica Acta, 2006, 51(8): 1636-1640. |
[26] | YOKOTA I.On the electrical conductivity of cuprous sulfide: a diffusion theory.Journal of the Physical Society of Japan, 1953, 8(5): 595-602. |
[27] | YOKOTA I.On the theory of mixed conduction with special reference to the conduction in silver sulfide group semiconductors.Journal of the Physical Society of Japan, 1961, 16(11): 2213-2223. |
[28] | MIYATANI S.Point contact of Pt and γ-Cu2S.Journal of the Physical Society of Japan, 1956, 11(10): 1059-1063. |
[29] | OKAMOTO K, KAWAI S.Electrical conduction and phase transition of copper sulfides.Japanese Journal of Applied Physics, 1973, 12(8): 1130-1138. |
[30] | ISHIKAWA T, MIYATANI S.Electronic and ionic conduction in Cu2-δSe, Cu2-δS and Cu2-δSe, S).Journal of the Physical Society of Japan, 1977, 42(1): 159-167. |
[31] | MIYATANI S.α-Ag2S as a mixed conductor.Journal of the Physical Society of Japan, 1968, 24(2): 328-336. |
[32] | MIYATANI S.Ionic conductivity in silver chalcogenides.Journal of the Physical Society of Japan, 1981, 50(10): 3415-3418. |
[33] | BALAPANOV M K, GAFUROV I G, MUKHAMED'YANOV U K,et al. Ionic conductivity and chemical diffusion in superionic LixCu2-xS (0≤x≤0.25). Physica Status Solidi B, 2004, 241(1): 114-119. |
[34] | WAGNER J B, WAGNER C.Electrical conductivity measurements on cuprous halides.The Journal of Chemical Physics, 1957, 26(6): 1597-1601. |
[35] | HARMAN T C.Special techniques for measurement of thermoelectric properties.Journal of Applied Physics, 1958, 29(9): 1373-1374. |
[36] | WOJAKOWSKA A, KRZYZAK E.Electrical conductivity of CuBr in the temperature range 500-1050 K.Solid State Ionics, 2005, 176(37/38): 2711-2716. |
[37] | WANG L W.High chalcocite Cu2S: a solid-liquid hybrid phase.Physical Review Letters, 2012, 108(8): 085703. |
[1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[6] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. |
[7] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[8] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[9] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. |
[12] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[13] | LU Zhiqiang, LIU Keke, LI Qiang, HU Qin, FENG Liping, ZHANG Qingjie, WU Jinsong, SU Xianli, TANG Xinfeng. Donor-like Effect and Thermoelectric Performance in p-Type Bi0.5Sb1.5Te3 Alloy [J]. Journal of Inorganic Materials, 2023, 38(11): 1331-1337. |
[14] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(11): 1338-1344. |
[15] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||