Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (9): 923-930.DOI: 10.15541/jim20160662
• Orginal Article • Previous Articles Next Articles
ZHAO Han1, 2, ZHOU Xiao-Xia1, PAN Lin-Yu1, 2, CHEN Hang-Rong1
Received:
2016-11-28
Revised:
2017-01-16
Published:
2017-09-30
Online:
2017-08-29
About author:
ZHAO Han. E-mail: zhaohan@student.sic.ac.cn
Supported by:
CLC Number:
ZHAO Han, ZHOU Xiao-Xia, PAN Lin-Yu, CHEN Hang-Rong. Birdnest-like CuCeZr Mixed Oxides: Synthesis and Excellent Catalysts for Diesel Exhaust Oxidatio[J]. Journal of Inorganic Materials, 2017, 32(9): 923-930.
Sample | Lattice parameter /nm a | SBET/ (m2·g-1) b | VBJH/ (cm3·g-1) c | Dp/nm c |
---|---|---|---|---|
CCZ-300 | 5.416 | 198.0 | 0.960 | 33.8 |
CCZ-350 | 5.415 | 186.0 | 0.900 | 32.6 |
CCZ-400 | 5.420 | 160.0 | 0.850 | 33.6 |
CCZ-500 | 5.418 | 128.0 | 0.800 | 32.5 |
CCZ-600 | 5.420 | 110.0 | 0.700 | 32.9 |
CCZ-800 | 5.415 | 12.0 | 0.150 | 49.0 |
CCZ-1000 | 5.389 | 0.1 | 0.001 | No data |
Table 1 Structural properties of different CCZ-x catalysts (x = 300-1000)
Sample | Lattice parameter /nm a | SBET/ (m2·g-1) b | VBJH/ (cm3·g-1) c | Dp/nm c |
---|---|---|---|---|
CCZ-300 | 5.416 | 198.0 | 0.960 | 33.8 |
CCZ-350 | 5.415 | 186.0 | 0.900 | 32.6 |
CCZ-400 | 5.420 | 160.0 | 0.850 | 33.6 |
CCZ-500 | 5.418 | 128.0 | 0.800 | 32.5 |
CCZ-600 | 5.420 | 110.0 | 0.700 | 32.9 |
CCZ-800 | 5.415 | 12.0 | 0.150 | 49.0 |
CCZ-1000 | 5.389 | 0.1 | 0.001 | No data |
Fig. 2 Temperature-programmed oxidation of soot catalyzed by different CCZ-x catalysts (x = 300-1000): soot conversion curves (a), and the change in characteristic temperatures (T90 and T50) and selectivity to CO2 () with increasing calcination temperature (b)
Sample | Cu: Ce: Zr a | Oads/(Oads+Olatt) |
---|---|---|
CCZ-800 | 0.17: 0.60: 0.23 | 0.23 |
CCZ-500 | 0.15: 0.65: 0.20 | 0.46 |
CCZ-350 | 0.12: 0.67: 0.21 | 0.64 |
CCZ-300 | 0.12: 0.69: 0.19 | 0.57 |
Table 2 XPS surface analyses of different CCZ-x (x = 800, 500, 350, 300)
Sample | Cu: Ce: Zr a | Oads/(Oads+Olatt) |
---|---|---|
CCZ-800 | 0.17: 0.60: 0.23 | 0.23 |
CCZ-500 | 0.15: 0.65: 0.20 | 0.46 |
CCZ-350 | 0.12: 0.67: 0.21 | 0.64 |
CCZ-300 | 0.12: 0.69: 0.19 | 0.57 |
Fig. 4 H2-TPR profiles of the selected CCZ-x catalysts (x= 300, 350, 500, and 800) Data in the brackets indicate the integrated area of the H2-TPR curves
Fig. 5 O2-TPD profiles of the selected CCZ-x catalysts (x= 300, 350, 500, and 800) Data in the brackets indicate the integrated area of the O2-TPD curves
Fig. 7 Schematic representation of (a) the role of the “nest structure” of CCZ-350 in soot combustion process, and (b) the soot combustion in NOx/O2 over CCZ-350 catalyst
[1] | HORVATH H.Atmospheric light absorption—a revie.Atmospheric Environment, 1993, 27(3): 293-317. |
[2] | VAN SETTEN B A A L, MAKKEE M, MOULIJN J A. Science and technology of catalytic diesel particulate filter.Catalysis Reviews-Science and Engineering, 2001, 43(4): 489-564. |
[3] | YU X H, ZHAO Z, WEI Y C,et al.Synthesis of K-doped three-dimensionally ordered macroporous Mn0.5Ce0.5Oδ catalysts and their catalytic performance for soot oxidatio. Chinese Journal of Catalysis, 2015, 36(11): 1957-1967. |
[4] | OBEID E, LIZARRAGA L, TSAMPAS M N,et al. Continuously regenerating diesel particulate filters based on ionically conducting ceramics. Journal of Catalysis, 2014, 309: 87-96. |
[5] | UCHISAWA J O, OBUCHI A, ZHAO Z,et al. Carbon oxidation with platinum supported catalyst. Applied Catalysis B: Environmental, 1998, 18(3/4): L183-L187. |
[6] | LIU J, ZHAO Z, WANG J Q,et al.The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustio. Applied Catalysis B: Environmental, 2008, 84(1/2): 185-195. |
[7] | WU X D, LIU S, LIN F,et al.Nitrate storage behavior of Ba/MnOx-CeO2 catalyst and its activity for soot oxidation with heat transfer limitation. Journal of Hazardous Materials, 2010, 181(1/2/3): 722-728. |
[8] | XU J F, LIU J, ZHAO Z,et al.Easy synthesis of three-dimensionally ordered macroporous La1-xKxCoO3 catalysts and their high activities for the catalytic combustion of soo. Journal of Catalysis, 2011, 282(1): 1-12. |
[9] | CAO C M, ZHANG Y X, LIU D S,et al. Gravity-driven multiple collision-enhanced catalytic soot combustion over a space-open array catalyst consisting of ultrathin ceria nanobelt. Small, 2015, 11(30): 3659-3664. |
[10] | AMADINE O, MATTI H, ABDELOUHADI K,et al.Ceria-supported copper nanoparticles: a highly efficient and recyclable catalyst for N-arylation of indol. Journal of Molecular Catalysis A: Chemical, 2014, 395: 409-419. |
[11] | LIU L J, YAO Z J, LIU B,et al.Correlation of structural characteristics with catalytic performance of CuO/CexZr1-xO2 catalysts for NO reduction by C. Journal of Catalysis, 2010, 275(1): 45-60. |
[12] | JIANG D, WANG W Z, ZHANG L,et al.A strategy for improving deactivation of catalytic combustion at low temperature via synergistic photo catalysi. Applied Catalysis B: Environmental, 2015, 165: 399-407. |
[13] | KONSOLAKIS M.The role of copper-ceria interactions in catalysis science: recent theoretical and experimental advance.Applied Catalysis B: Environmental, 2016, 198: 49-66. |
[14] | SAINZ-VIDAL A, BALMASEDA J, LARTUNDO-ROJAS L,et al. Preparation of Cu-mordenite by ionic exchange reaction under milling: a favorable route to form the mono-(μ-oxo) dicopper active specie. Microporous and Mesoporous Materials, 2014, 185: 113-120. |
[15] | VERHELST J, DECROUPET D, DE VOS D.Catalytic self-cleaning coatings for thermal oxidation of organic deposits on glas.Catalysis Science & Technology, 2013, 3(6): 1579-1590. |
[16] | DUPIN J C, GONBEAU D, VINATIER P,et al. Systematic XPS studies of metal oxides, hydroxides and peroxide. Physical Chemistry Chemical Physics, 2000, 2(6): 1319-1324. |
[17] | HUO C L, OUYANG J, YANG H M.CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous material.via direct synthetic route. Scientific Reports, 2014, 4: 3682. |
[18] | FEI Z Y, LU P, FENG X Z,et al. Geometrical effect of CuO nanostructures on catalytic benzene combustio. Catalysis Science & Technology, 2012, 2(8): 1705-1710. |
[19] | BUENO-LOPEZ A.Diesel soot combustion ceria catalyst.Applied Catalysis B: Environmental, 2014, 146: 1-11. |
[20] | ANEGGI E, DE LEITENBURG C, DOLCETTI G, et al. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2.Catalysis Today, 114(1): 40-47. |
[21] | KASPAR J, FORNASIERO P, GRAZIANI M.Use of CeO2-based oxides in the three-way catalysi.Catalysis Today, 1999, 50(2): 285-298. |
[22] | SETIABUDI A, MAKKEE M, MOULIJN J A.The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gase.Applied Catalysis B: Environmental, 2004, 50(3): 185-194. |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[14] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[15] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||