Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (10): 1051-1057.DOI: 10.15541/jim20160212
• Orginal Article • Previous Articles Next Articles
YANG Suo-Long, WANG Xiao-Fang, JIANG Chun-Li, ZHAO Ya-Wen, ZENG Rong-Guang, WANG Huai-Sheng, LAI Xin-Chun
Received:
2016-03-31
Revised:
2016-05-17
Published:
2016-10-20
Online:
2016-09-23
Supported by:
CLC Number:
YANG Suo-Long, WANG Xiao-Fang, JIANG Chun-Li, ZHAO Ya-Wen, ZENG Rong-Guang, WANG Huai-Sheng, LAI Xin-Chun. Doping of InP Quantum Dots and Its Optical Properties[J]. Journal of Inorganic Materials, 2016, 31(10): 1051-1057.
Fig. 1 Evolution absorption spectra of (a) Li: InP and (b) Zn: InP QDs. Absorption spectra of (c) Li: InP QDs and (d) Zn: InP QDs with different dopant contents
Sample | Peak/nm | D/nm | Eg/eV | Sample | Peak/nm | D/nm | Eg/eV |
---|---|---|---|---|---|---|---|
Undoped | 564 | 2.91 | 2.20 | Undoped | 564 | 2.91 | 2.20 |
Zn/In=0.1 | 534 | 2.55 | 2.32 | Li/In=0.1 | 520 | 2.40 | 2.38 |
Zn/In=0.2 | 518 | 2.38 | 2.39 | Li/In=0.2 | 499 | 2.20 | 2.48 |
Zn/In=0.3 | 491 | 2.13 | 2.53 | Li/In=0.3 | 495 | 2.16 | 2.51 |
Table 1 Calculated D and Eg of Li: InP and Zn: InP QDs
Sample | Peak/nm | D/nm | Eg/eV | Sample | Peak/nm | D/nm | Eg/eV |
---|---|---|---|---|---|---|---|
Undoped | 564 | 2.91 | 2.20 | Undoped | 564 | 2.91 | 2.20 |
Zn/In=0.1 | 534 | 2.55 | 2.32 | Li/In=0.1 | 520 | 2.40 | 2.38 |
Zn/In=0.2 | 518 | 2.38 | 2.39 | Li/In=0.2 | 499 | 2.20 | 2.48 |
Zn/In=0.3 | 491 | 2.13 | 2.53 | Li/In=0.3 | 495 | 2.16 | 2.51 |
Fig. 2 TEM images of undoped InP QDs, Li: InP QDs and Zn: InP QDs QDs The insets are the corresponding HRTEM images (a-c) and size distribufion (a-e) (a) undoped InP QDs, (b) Li: InP QDs with Li/In=0.1, Zn: InP QDs QDs with (c) Zn/In=0.1 (d) Zn/In=0.2, (e) Zn/In=0.3
[1] | TALAPIN D V, LEE J S, KOVALENKO M V, et al.Prospects of colloidal nanocrystals for electronic and optoelectronic applications.Chem. Rev., 2010, 110(1): 389-458. |
[2] | WU P, YAN X P.Doped quantum dots for chemo/biosensing and bioimaging.Chem. Soc. Rev., 2013, 42(12): 5489-5521. |
[3] | MUSHONGA P, ONANI M O, MADIEHE A M, et al.Indium phosphide-based semiconductor nanocrystals and their applications.Journal of Nanomaterials, 2012, 12(19): 5869-5878. |
[4] | YANG S L, ZHAO P X, ZHAO X C, et al.InP and Sn: InP based quantum dot sensitized solar cells.J. Mater. Chem. A, 2015, 3(43): 21922-21929. |
[5] | SOENEN S J, MANSHIAN B B, AUBERT T, et al.Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging.Chem. Res. Toxicol., 2014, 27(6): 1050-1059. |
[6] | ADAM S, TALAPIN D V, BORCHERT H, et al.The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals.J. Chem. Phys., 2005, 123(8): 084706. |
[7] | ADAM S, MCGINLEY C, MOLLER T, et al.Photoemission study of size selected InP nanocrystals: the relationship between luminescence yield and surface structure.Eur. Phys. J. D., 2003, 24(1): 373-376. |
[8] | ZHENG J J, CAO S, GAO F M, et al.Synthesis of effective and qualified Cu-doped ZnSe quantum dots and their optical properties.Journal of Inorganic Materials, 2013, 28(2): 159-164. |
[9] | THUY U T, MAURICE A, LIEM N Q, et al.Europium doped In(Zn)P/ZnS colloidal quantum dots.Dalton Trans., 2013, 42(35): 12606-12610. |
[10] | SOMASKANDAN K, TSOI G M, WENGER L E, et al.Isovalent doping strategy for manganese introduction into III-V diluted magnetic semiconductor nanoparticles: InP : Mn.Chem. Mater., 2005, 17(5): 1190-1198. |
[11] | XIE R G, PENG X G.Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters.J. Am. Chem. Soc., 2009, 131(30): 10645-10651. |
[12] | THUY U T, REISS P, LIEM N Q.Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots.Appl. Phys. Lett., 2010, 97(19): 193104. |
[13] | BATTAGLIA D, PENG X G.Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent.Nano Lett., 2002, 2(9): 1027-1030. |
[14] | TUINENGA C, JASINSKI J, IWAMOTO T, et al.In situ observation of heterogeneous growth of CdSe quantum dots: effect of indium doping on the growth kinetics.ACS Nano, 2008, 2(7): 1411-1421. |
[15] | MOCATTA D, COHEN G, SCHATTNER J, et al.Heavily doped semiconductor nanocrystal quantum dots.Science, 2011, 332(6025): 77-81. |
[16] | GUZELIAN A A, KATARI J E B, KADAVANICH A V, et al. Synthesis of size-selected, surface-passivated InP nanocrystals.J. Phys. Chem., 1996, 100(17): 7212-7219. |
[17] | FU H X, ZUNGER A.Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots.Phys Rev B, 1997, 55(3): 1642-1653. |
[18] | ZHANG Z L, LI D Z, XIE R G, et al.Insights into the energy levels of semiconductor nanocrystals by a dopant approach.Angew. Chem. Int. Ed. Engl., 2013, 52(19): 5052-5055. |
[19] | SCHWARTZ D A, NORBERG N S, NGUYEN Q P, et al.Magnetic quantum dots: synthesis, spectroscopy, and magnetism of CO2+- and Ni2+-doped ZnO nanocrystals.J. Am. Chem. Soc., 2003, 125(43): 13205-13218. |
[20] | ROCKENBERGER J, ZUM FELDE U, TISCHER M, et al.Near edge x-ray absorption fine structure measurements (XANES) and extended x-ray absorption fine structure measurements (EXAFS) of the valence state and coordination of antimony in doped nanocrystalline SnO2.J. Chem. Phys., 2000, 112(9): 4296-4304. |
[21] | PARK J, KIM S W.CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence.J. Mater. Chem., 2011, 21(11): 3745-3750. |
[22] | VIRIEUX H, LE TROEDEC M, CROS-GAGNEUX A, et al.InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description.J. Am. Chem. Soc., 2012, 134(48): 19701-19708. |
[23] | XU S, ZIEGLER J, NANN T.Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals.J. Mater. Chem., 2008, 18(23): 2653-2656. |
[24] | SHARMA M, MUSHRUSH M, WRIGHT R J, et al.Growth of polycrystalline zinc phosphide thin films by reactive radio frequency magnetron sputtering.Thin Solid Films, 2015, 591(A): 32-38. |
[25] | HO M Q, ESTEVES R J A, KEDARNATH G, et al. Size-dependent optical properties of luminescent Zn3P2 quantum dots.J. Phys. Chem. C, 2015, 119(19): 10576-10584. |
[1] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. |
[2] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
[3] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[4] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[5] | PAN Yuzhou, HE Fajian, XU Lulu, DAI Shixun. Broadband 3 μm Mid-infrared Emission in Dy3+/Yb3+ Co-doped Tellurite Glass under 980 nm LD Excitation [J]. Journal of Inorganic Materials, 2025, 40(5): 521-528. |
[6] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[7] | CHEN Zi, ZHANG Aidi, GONG Ke, LIU Haihua, YU Gang, SHAN Qingsong, LIU Yong, ZENG Haibo. High-brightness and Monodisperse Quaternary CuInZnS@ZnS Quantum Dots with Tunable and Long-lived Emission [J]. Journal of Inorganic Materials, 2025, 40(4): 433-339. |
[8] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[9] | LÜ Xinyi, XIANG Hengyang, ZENG Haibo. Long-range Ordered Films Boost Efficient Perovskite Quantum Dot Light-emitting Devices [J]. Journal of Inorganic Materials, 2025, 40(1): 111-112. |
[10] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[11] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[12] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[13] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[14] | YUE Zihao, YANG Xiaotu, ZHANG Zhengliang, DENG Ruixiang, ZHANG Tao, SONG Lixin. Effect of Pb2+ on the Luminescent Performance of Borosilicate Glass Coated CsPbBr3 Perovskite Quantum Dots [J]. Journal of Inorganic Materials, 2024, 39(4): 449-456. |
[15] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||