Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (8): 845-850.DOI: 10.15541/jim20130588
• Orginal Article • Previous Articles Next Articles
WU Xiao-Yu, LI Song-Mei , LIU Jian-Hua, YU Mei, WANG Bo
Received:
2013-11-13
Revised:
2014-01-08
Published:
2014-08-20
Online:
2014-07-15
About author:
WU Xiao-Yu. E-mail: buaawxy@mse.buaa.edu.cn
Supported by:
CLC Number:
WU Xiao-Yu, LI Song-Mei,LIU Jian-Hua, YU Mei, WANG Bo. Preparation and Microwave Absorption Properties of CoFe2O4-graphene Nanocomposites[J]. Journal of Inorganic Materials, 2014, 29(8): 845-850.
Fig. 2 SEM (a, b) and TEM (c, d) images of the CoFe2O4- graphene nanocomposites (a, c) CFO-GN-1; (b, d) CFO-GN-2; Inset in (d) is the corresponding HRTEM image of CFO-GN-2
Fig. 5 Relation curves of dielectric and magnetic loss tangent vs frequency of the CoFe2O4-graphene nanocomposites (a) Dielectric loss tangent ; (b) Magnetic loss tangent
[1] | BRICEÑO S, BRÄMER-ESCAMILLA W, SILVA P, et al. Effects of synthesis variables on the magnetic properties of CoFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2012, 324(18): 2926-2931. |
[2] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669. |
[3] | NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimen-sional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. |
[4] | HOU J B, SHAO Y Y, MICHAEL W E, et al. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 2011, 13(34): 15384-15402. |
[5] | WANG C, HAN X J, XU P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Applied Physics Letters, 2011, 98(7): 072906-1-3. |
[6] | KUANG D, HU W B. Research progress of graphene composites. Journal of Inorganic Materials, 2013, 28(3): 235-246. |
[7] | ZHOU Y, BAO Q L, TANG L A L, et al. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 2009, 21(13): 2950-2956. |
[8] | XU Y X, SHENG K X, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7): 4324-4330. |
[9] | LI N W, ZHENG M B, CHANG X F, et al. Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties . Journal of Solid State Chemistry, 2011, 184(4): 953-958. |
[10] | SANPO N, BERNDT C C, WEN C, et al. Transition metal- substi-tu-ted cobalt ferrite nanoparticles for biomedical applications. Acta Biomaterialia, 2013, 9(3): 5830-5837. |
[11] | FANG J J, LI S F, ZHA W K, et al. Microwave absorbing properties of nickel-coated graphene. Journal of Inorganic Materials, 2011, 26(5): 467-471. |
[12] | HOQUE S M, SRIVASTAVA C, SRIVASTAVA N, et al. Synthesis and characterization of Fe-and Co-based ferrite nanoparticles and study of the T1 and T2 relaxivity of chitosan-coated particles. Journal of Materials Science, 2013, 48(2): 812-818. |
[13] | DOULABI F S M, MOHSEN-NIA M. Magnetic cobalt-zinc ferrite/PVAc nanocomposite: synthesis and characterization. Iranian Polymer Journal, 2013, 22(1): 9-14. |
[14] | CHEN K Y, XIANG C, LI L C, et al. A novel ternary composite: fabrication, performance and application of expanded graphite/ polyaniline/CoFe2O4 ferrite. Journal of Materials Chemistry, 2012, 22(13): 6449-6455. |
[15] | HUMMERS JR W S, OFFEMAN R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339. |
[16] | LI S M, WANG B, LIU J H, et al. Synthesis and microwave absorption properties of nickel nanoparticles-graphene composites with different morphologies. Acta Physico-Chimica Sinica, 2012, 28(11): 2754-2760. |
[17] | XU K, SHEN L F, MI C H, et al. Synthesis and electrochemical performance of graphene modified LiFePO4 cathode materials .icoActa Phys-Chimica Sinica, 2012, 28(1): 105-110. |
[18] | FU M, JIAO Q Z, ZHAO Y. Preparation of NiFe2O4 nanorod- graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. Journal of Materials Chemistry A, 2013, 1(18): 5577-5586. |
[19] | KUMAR V, RANA A, KUMAR N, et al. Investigations on controlled-size-precipitated cobalt ferrite nanoparticles. International Journal of Applied Ceramic Technology, 2011, 8(1): 120-126. |
[20] | HOSSEINI S H, ASADNIA A. Polyaniline/Fe3O4 coated on MnFe2O4 nanocomposite: preparation, characterization, and applications in microwave absorption. International Journal of Physical Sciences, 2013, 8(22): 1209-1217. |
[21] | PEREIRA C, PEREIRA A M, FERNANDES C, et al. Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chemistry of Materials, 2012, 24(8): 1496-1504. |
[22] | LIU S Y, XIE J, FANG C C, et al. Self-assembly of a CoFe2O4/ gra-phene sandwich by a controllable and general route: towards a high-performance anode for Li-ion batteries. Journal of Materials Chemistry, 2012, 22(37): 19738-19743. |
[23] | ZEN J, FAN H Q, WANG Y L, et al. Ferromagnetic and microwave absorption properties of copper oxide/cobalt/carbon fiber multiplayer film composites.Thin Solid Films, 2012, 520(15): 5053-5059. |
[24] | ZHAO D L, SHEN Z M. Preparation and microwave absorbing properties of microwave absorbing materials containing carbon nanotubes .Journal of Inorganic Materials, 2005, 20(3): 608-612. |
[25] | TANG X, ZHAO B Y, HU K A. Study on the synthesis and electromagnetic properties of polyaniline-barium ferrite composites. Ordnance Material Science and Engineering, 2006, 29(5): 45-48. |
[26] | GLEITER H. Nanocrystalline materials. Progress in Materials Science, 1989, 33: 223-315. |
[27] | SU B T, ZUO X W, HU C L, et al. Synthesis and electromagnetic properties of polyaniline/CoFe2O4 nanocomposite. Acta Physico-Chimica Sinica, 2008, 24(10): 1932-1936. |
[28] | SINGH P, BABBAR V K, RAZDAN A, et al. Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites. Journal of Applied Physics, 2000, 87(9): 4362-4366. |
[29] | ZHANG H, XIE A, WANG C, et al. Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. Journal of Materials Chemistry A, 2013, 1: 8547-8552. |
[1] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[2] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[3] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[4] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[5] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[6] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[7] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[8] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[9] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[10] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[11] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[12] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[13] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
[14] | LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite [J]. Journal of Inorganic Materials, 2021, 36(7): 725-732. |
[15] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||