[1] Strauss E, Ardel G, Livshits V, et al. Lithium polymer electrolyte pyrite rechargeable battery: comparative characterization of natural pyrite from different sources as cathode material. J. Power Sources, 2000, 88(2): 206-218.[2] Peled E, Golodnitsky D, Strauss E, et al. Li/CPE/FeS2 rechargeable battery. Electrochim Acta, 1998, 43(10/11): 1593-1599.[3] Zhang D,Tu J P, Xiang J Y, et al. Influence of particle size on electrochemical performances of pyrite FeS2 for Li-ion batteries. Electrochimca Acta, 2011, 56(27): 9980–9985.[4] Ennaoui A, Fiechter S, Goslowsky H, et al. Photoactive synthetic polycrystalline pyrite (FeS2). J. Electrochem. Soc. 1985, 132(7):1579-1582. [5] Wu R, Zheng Y F, Zhang X G, et al. Hydrothermal synthesis and crystal structure of pyrite. J. Cryst Growth, 2004, 266(4): 523-527. [6] Feng X, He X M, Pu W H, et al. Hydrothermal synthesis of FeS2 for lithium batteries. Ionics, 2007, 13(5): 375-377.[7] Chen X H, Fan R. Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater., 2001, 13 (3): 802-805.[8] Gao P, Xie Y, Ye L. N, et al. From 2D nanoflats to 2D nanowire networks: A novel hyposulfite self-decomposition route to semiconductor FeS2 nanowebs. Cryst. Growth Des., 2006, 6(2): 583-587.[9] Wang D W, Wang Q H, Wang T M. Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted slvothermal method. Ryst. Eng. Comm., 2010, 12(3): 755-761.[10] Wang D W,Wu M H, Wang Q H, et al. Controlled growth of uniform nanoflakes-built pyrite FeS2 microspheres and their electrochemical properties. Ionics, 2011, 17(2): 163-167.[11] Rosamada F, Dahn J R, Jones C H W. Electrochemistry of pyrite- based cathodes for ambient temperature lithium batteries. J. Electrochem. Soc., 1989, 136(11): 3206-3210.[12] Choi Y J, Kim N W, Kim K W, et al. Electrochemical properties of nickel-precipitated pyrite as cathode active material for lithium/ pyrite cell. J. Alloys Compd., 2009, 485(1): 462–466. [13] Huang S Y, Liu X Y, Li Q Y, et al. Pyrite film synthesized for lithium- ion batteries. J. Alloys Compd., 2009, 472(1): L9–L12. [14] Zhang D, Mai Y J, Xiang J Y, et al. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J. Power Sources, 2012, 217: 229–235.[15] Egashira M, Itoh M, Tokita M, et al. Preparation and capacitor performance of composites based on mesoporous carbon/nanofibrous carbons. TANSO, 2011(246): 6-10.[16] Duan H, Zheng Y F, Dong Y Z, et al. Pyrite (FeS2) films prepared via sol–gel hydrothermal method combined with electrophoretic deposition (EPD). Mater. Res. Bull., 2004, 39(12): 1861–1868.[17] Duan H, Zheng Y F, Zhang X G, et al. Hydrothermal synthesis of iron pyrite (FeS2) crystalpowder and thermal-kinetic study on crystal growth. Acta Physica Sinica, 2005, 54(4): 1659–1664.[18] Zheng X D, Dong C C, Huang B, et al. Effects of conductive carbon on the electrochemical performances of Li4Ti5O12/C composites. J. Electrochem. Sci., 2012, 7: 9869 –9880.[19] Hansen K, West K. Lithium insertion into iron sulfides. Electrochem. Soc. Proc., 1997, 97(18): 124-132.[20] Strauss E, Golodnitsky D, Peled E. Elucidation of the charge-discharge mechanism of lithium/polymer electrolyte/pyrite batteries. J. Solid State Electrochem., 2002, 6(7): 468–474. [21] Montoro L A, Rosolen J M. Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ionics, 2003, 159(3): 233–240. [22] Montoro L A, Rosolen J M, Shin J H, et al. Investigations of natural pyrite in solvent-free polymer electrolyte, lithium metal batteries. Electrochim. Acta, 2004, 49(20): 3419–3427.[23] Choi Y J, Chung Y D, Baek C Y, et al. Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. J. Power Sources, 2008, 184(2): 548–552. |