Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 481-488.DOI: 10.15541/jim20240495
• RESEARCH ARTICLE • Previous Articles Next Articles
FAN Xiaoxuan(), ZHENG Yonggui, XU Lirong, YAO Zimin, CAO Shuo, WANG Kexin(
), WANG Jiwei(
)
Received:
2024-11-27
Revised:
2025-01-24
Published:
2025-05-20
Online:
2025-02-13
Contact:
WANG Kexin, lecturer. E-mail: wyf93jl@163.com;About author:
FAN Xiaoxuan (1997-), female, PhD candidate. E-mail: fanxiaoxuan0314@163.com
Supported by:
CLC Number:
FAN Xiaoxuan, ZHENG Yonggui, XU Lirong, YAO Zimin, CAO Shuo, WANG Kexin, WANG Jiwei. Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor[J]. Journal of Inorganic Materials, 2025, 40(5): 481-488.
Fig. 1 Phase and morphology analyses of catalysts (a) XRD patterns of LiYGeO4: Bi3+, LiYScGeO4: Bi3+, and VO-LiYScGeO4: Bi3+; (b) EDS elemental mappings of VO-LiYScGeO4: Bi3+; (c) SEM image of VO-LiYScGeO4: Bi3+; (d) EDS spectrum of VO-LiYScGeO4: Bi3+
Fig. 2 Optical properties of LiYScGeO4: Bi3+ and VO-LiYScGeO4: Bi3+ (a) Long afterglow decay curves of LiY0.997-xScxGeO4: 0.003Bi3+ phosphors recorded at 355 nm after irradiation with 254 nm UV lamp for 10 min; (b) Fitted O1s XPS spectra; (c) UV-Vis DRS spectra with inset showing Tauc plots; (d) Emission spectra under 254 nm excitation; (e) TL spectra; (f) Afterglow decay curves Colorful figures are available on website
Fig. 3 Electrochemical performance of LiYScGeO4: Bi3+ and Vo-LiYScGeO4: Bi3+ (a) Afterglow photocurrent; (b) Steady-state photocurrent response; (c) Electrochemical impedance spectra; (d) Mott-Schottky plots
Fig. 6 Analysis of photocatalytic degradation mechanism (a) Degradation efficiency of VO-LiYScGeO4: Bi3+ on RhB with addition of reactive species scavengers BQ, EDTA and IPA, with inset showing degradation curves; (b) Schematic diagram of degradation process of long afterglow luminescence photocatalyst VO-LiYScGeO4: Bi3+ in dark environment
Sample | A1 | τ1/s | A2 | τ2/s | R2 |
---|---|---|---|---|---|
LiYScGeO4: Bi3+ | 1.59×105 | 592 | 1.17×109 | 283 | 0.9834 |
VO-LiYScGeO4: Bi3+ | 4.11×104 | 518 | 1.69×105 | 573 | 0.9967 |
Table S1 Afterglow decay parameters of LiYScGeO4: Bi3+ and VO-LiYScGeO4: Bi3+
Sample | A1 | τ1/s | A2 | τ2/s | R2 |
---|---|---|---|---|---|
LiYScGeO4: Bi3+ | 1.59×105 | 592 | 1.17×109 | 283 | 0.9834 |
VO-LiYScGeO4: Bi3+ | 4.11×104 | 518 | 1.69×105 | 573 | 0.9967 |
[1] | PARUL, KAUR K, BADRU R, et al. Photodegradation of organic pollutants using heterojunctions: a review. Journal of Environmental Chemical Engineering, 2020, 8(2): 103666. |
[2] | HU M, QUAN Y, YANG S, et al. Self-cleaning semiconductor heterojunction substrate: ultrasensitive detection and photocatalytic degradation of organic pollutants for environmental remediation. Microsystems & Nanoengineering, 2020, 6: 111. |
[3] | QIAN J, XUE Y, AO Y, et al. Hydrothermal synthesis of CeO2/NaNbO3 composites with enhanced photocatalytic performance. Chinese Journal of Catalysis, 2018, 39(4): 682. |
[4] | CHEN D, CHENG Y, ZHOU N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. Journal of Cleaner Production, 2020, 268: 121725. |
[5] | 梁平平, 刘帅, 李红艺, 等. PVDF-CNT自漂浮多孔微珠的制备及在高效太阳能驱动界面水蒸发中的应用. 高等学校化学学报, 2021, 42(8): 2689. |
[6] | TANG J, LIU Y, ZHANG X, et al. Fabrication of loaded Ag sensitized round-the-clock highly active Z-scheme BiFeO3/Ag/ Sr2MgSi2O7:Eu2+, Dy3+/Ag photocatalyst for metronidazole degradation and hydrogen production. Journal of Power Sources, 2023, 580: 233433. |
[7] | HAI O, PEI M, YANG E, et al. Exploration of long afterglow luminescence materials work as round-the-clock photocatalysts. Journal of Alloys and Compounds, 2021, 866: 158752. |
[8] | XIAO B, TONG S, YAN L, et al. Round-the-clock photocatalysis of plasmonic Ag-enhanced Z-scheme heterojunction material Sr2MgSi2O7: (Eu, Dy)/g-C3N4@Ag under visible-light irradiation. Molecular Catalysis, 2024, 552: 113674. |
[9] | VAIDYANATHAN S. Recent progress on lanthanide-based long persistent phosphors: an overview. Journal of Materials Chemistry C, 2023, 11(26): 8649. |
[10] | DING Y, YE Y, WANG C, et al. “Light battery” role of long afterglow phosphor for round-the-clock environmental photocatalysis. Journal of Cleaner Production, 2024, 450: 142041. |
[11] | LI Y, GUO C, YUAN J, et al. Recent advances and prospects of persistent luminescent materials in public health applications. Chemical Engineering Journal, 2024, 487: 150424. |
[12] | JANY H F, KARLA V L, PETER H, et al. Wastewater sludge recycling: an efficient catalyst for photo-Fenton degradation of antibiotics and effluent disinfection. Chemical Engineering Journal, 2023, 467: 143380. |
[13] | DU C, ZHANG Y, ZHANG Z, et al. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo- Fenton: a review. Chemical Engineering Journal, 2022, 431: 133932. |
[14] | LIU X, ZHOU Y, ZHANG J, et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps. Chemical Engineering Journal, 2018, 347: 379. |
[15] | CAO Z, ZHANG J, ZHOU J, et al. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye. Journal of Environmental Management, 2017, 193: 146. |
[16] | PEI L, MA Z, ZHONG J, et al. Oxygen vacancy-rich Sr2MgSi2O7: Eu2+, Dy3+ long afterglow phosphor as a round-the-clock catalyst for selective reduction of CO2 to CO. Advanced Functional Materials, 2022, 32(49): 2208565. |
[17] | JIANG T, XIE W, GENG S, et al. Constructing oxygen vacancy- regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis. Chinese Journal of Catalysis, 2022, 43(9): 2434. |
[18] | ZHAO W, WEI Z, LI C, et al. An oxygen-vacancy rich ZnFe2O4/BiOI/AgI heterojunction for enhanced photocatalytic and photo-Fenton performance via double Z-scheme structure. Materials Research Bulletin, 2024, 169: 112508. |
[19] | KONG Y, CHEN S, HE J, et al. Oxygen-vacancy rich in melilite to modulate the persistent luminescence for multi-functional applications. Journal of Materials Chemistry C, 2023, 11(27): 9262. |
[20] | YANG T, JIANG H, HAI O, et al. Effect of oxygen vacancies on the persistent luminescence of Y3Al2Ga3O12: Ce3+,Yb3+ phosphors. Inorganic Chemistry, 2021, 60(23): 17797. |
[21] | FAN X, XU L, LIU W, et al. Energy transfer in dual-emission LiY6(BO3)3O5: Bi3+, Eu3+ phosphors for temperature sensing applications. Ceramics International, 2024, 50(18): 32583. |
[22] | ZHU Y, LIANG Y, LIU S, et al. Narrow-band green-emitting Sr2MgAl22O36:Mn2+ phosphors with superior thermal stability and wide color gamut for backlighting display applications. Advanced Optical Materials, 2019, 7(6): 1801419. |
[23] | WANG S, WU H, FAN Y, et al. A highly efficient narrow-band blue phosphor of Bi3+-activated cubic borate Ba3Lu2B6O15 towards backlight display applications. Chemical Engineering Journal, 2022, 432: 134265. |
[24] | HAI O, PEI M, REN Q, et al. Ag nanoparticles significantly improve the slow decay brightness of SrAl2O4: Eu2+, Dy3+ by the surface plasmon effect. Dalton Transactions, 2022, 51(6): 2287. |
[25] | YANG E, HAI O, REN Q, et al. Improved trap capability of shallow traps of Sr2MgSi2O7: Eu2, Dy3+ through depositing Au nanoparticles. Journal of Alloys and Compounds, 2021, 858: 157705. |
[26] | LU J C, BAI X L, ZHAO Q Y, et al. Construction of AgI/PCN-224 Z-scheme heterojunction for efficient photocatalytic degradation of tetracycline hydrochloride: pathways, mechanism and theoretical calculations. Journal of Cleaner Production, 2024, 456: 142364. |
[27] | WEI B, WANG C, HE Y, et al. A novel FeS2@g-C3N4 composite with enhanced photo-Fenton catalytic activity for pollutant degradation. Composites Communications, 2021, 24: 100652. |
[28] | LUO J, ZHAO J, XIE Y, et al. Surface modified Bi2SiO5 microflowers with Fe3+ doping for efficient degradation of organic contaminants. Journal of Alloys and Compounds, 2022, 926: 166866. |
[29] | GUAN F, YANG H, LI J, et al. Preparation of Na+/g-C3N4 materials and their photocatalytic degradation mechanism on methylene blue. Journal of Inorganic Materials, 2024, 39(10): 1143. |
[30] | DU Z, LI K, ZHOU S, et al. Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides. Chemical Engineering Journal, 2020, 380: 122427. |
[31] | RICARDO I A, PANIAGUA C E S, PAIVA V A B, et al. Degradation and initial mechanism pathway of chloramphenicol by photo-Fenton process at circumneutral pH. Chemical Engineering Journal, 2018, 339: 531. |
[32] | ZHOU D M, CHEN L J, ZHAO X, et al. Persistent production of multiple active species with copper doped zinc gallate nanoparticles for light-independent photocatalytic degradation of organic pollutants. Journal of Colloid and Interface Science, 2024, 668: 540. |
[33] | ZOU P, LI Z, JIA P, et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623: 126705. |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | JIA Xianghua, ZHANG Huixia, LIU Yanfeng, ZUO Guihong. Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach [J]. Journal of Inorganic Materials, 2025, 40(4): 397-404. |
[3] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[4] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[5] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[6] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[7] | XIAO Wenyan, FU Yan, YANG Shubin, ZHU Jie, CHENG Zhaoyang, WEN Xiaoxu, TANG Jiafan, YU Liang, ZHANG Qian. Seawater Electrolysis Performance of Self-supported Amorphous Ce-FeHPi/NF Electrode [J]. Journal of Inorganic Materials, 2024, 39(12): 1348-1356. |
[8] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[9] | ZENG Qiqi, WU Yanzheng, CHENG Huangyu, SHAO kang, HU Tianyu, PAN Zaifa. Calcium Doped Self-activated Zinc Germanate Long Afterglow Materials: Multicolor Afterglow and Application in Dynamic Anti-counterfeiting [J]. Journal of Inorganic Materials, 2023, 38(8): 901-909. |
[10] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[11] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[12] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[13] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[14] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[15] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||